Информационный бюллетень «Статьи» № 26 26.06.2023

С 332 - Электромагнитные взаимодействия

1. Cao, S.S. Design and Testing of an Ultralow Q CBPM / S.S.Cao, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1702-1711. - Bibliogr.:27.
https://doi.org/10.1109/TNS.2022.3157815

С 344.1 - Методы и аппаратура для регистрации элементарных частиц и фотонов

2. Capra, S. An Innovative Analog Circuit to Retrieve Energy Information from Signals of Deeply Saturated Preamplifiers Connected to Semiconductor Detectors / S.Capra, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1757-1764. - Bibliogr.:24.
https://doi.org/10.1109/TNS.2022.3178760
3. Chiesa, D. Measurements of Neutron Fields in a Wide Energy Range Using Multi-Foil Activation Analysis / D.Chiesa, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1659-1666. - Bibliogr.:23.
https://doi.org/10.1109/TNS.2021.3138636
4. Guckes, A.L. End-to-End Simulations of a 3.4-m Detector Wall for Neutron-Diagnosed Subcritical Experiments / A.L.Guckes, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1403-1411. - Bibliogr.:19.
https://doi.org/10.1109/TNS.2021.3139846
5. Hernandez-Gutierrez, C.A. Modeling and SPICE Simulation of the CdS/CdTe Neutron Detectors Integrated with Si-Poly TFTs Amplifiers / C.A.Hernandez-Gutierrez, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1310-1315. - Bibliogr.:37.
https://doi.org/10.1109/TNS.2022.3171695
6. Lim, K.T. The Feasibility of Passive Neutron Measurement for Dry Storage Safeguards Approach / K.T.Lim, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1331-1335. - Bibliogr.:22.
https://doi.org/10.1109/TNS.2022.3149322
7. Malige, A. Real-Time Data Processing Pipeline for Trigger Readout Board-Based Data Acquisition Systems / A.Malige, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1765-1772. - Bibliogr.:20.
https://doi.org/10.1109/TNS.2022.3186157
8. Matta, J.T. Maximum Likelihood Spectrum Decomposition for Isotope Identification and Quantification / J.T.Matta, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1212-1224. - Bibliogr.:29.
https://doi.org/10.1109/TNS.2022.3162986
9. Sole, C. Benchmarking a New Digital Data Acquisition System for Fast Neutron Metrology / C.Sole, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1780-1788. - Bibliogr.:21.
https://doi.org/10.1109/TNS.2022.3182348
10. Wu, R. Energy Spectrum Correction and Carrier Mobility Calculation of CdZnTe Pixel Detector Based on the Depth of Interaction / R.Wu, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1773-1779. - Bibliogr.:27.
https://doi.org/10.1109/TNS.2022.3170427

С 344.1ж - Сцинтилляционные счетчики, камеры. Сцинтилляционные вещества. Микроканальные умножители

11. Heath, M.R. Development of a Portable Pixelated Fast-Neutron Imaging Panel / M.R.Heath, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1352-1356. - Bibliogr.:18.
https://doi.org/10.1109/TNS.2021.3136344
12. Hiep, C.V. Nuclide Identification Algorithm for the Large-Size Plastic Detectors Based on Artificial Neural Network / C.V.Hiep, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1203-1211. - Bibliogr.:21.
https://doi.org/10.1109/TNS.2022.3173371
13. Johnson, E.B. Design of a High-Speed Neutron Imager Using a Boron-Loaded Organic Glass Scintillator / E.B.Johnson, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1317-1321. - Bibliogr.:11.
https://doi.org/10.1109/TNS.2021.3130491
14. Kim, H.S. Dual-Particle Imaging Performance of a Cs 2 LiYCl 6 :Ce (CLYC)-Based Rotational Modulation Collimator (RMC) System / H.S.Kim, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1389-1396. - Bibliogr.:33.
https://doi.org/10.1109/TNS.2021.3140035
15. Liang, F. Silicon Photomultipliers Coupled to Scintillators with the Emission Maximum at 550 nm / F.Liang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1799-1805. - Bibliogr.:28.
https://doi.org/10.1109/TNS.2022.3179823
16. Meert, C.A. Photoneutron Detection in Active Interrogation Scenarios Using Small Organic Scintillators / C.A.Meert, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1397-1402. - Bibliogr.:14.
https://doi.org/10.1109/TNS.2022.3164601
17. Meyer, A. X-Ray Radioluminescence in Diversely Doped Multimode Silica-Based Optical Fibers / A.Meyer, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1625-1632. - Bibliogr.:31.
https://doi.org/10.1109/TNS.2022.3140392
18. Mitchell, L.J. Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7 / L.J.Mitchell, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1322-1330. - Bibliogr.:20.
https://doi.org/10.1109/TNS.2022.3155721
19. Pinson, M. Development of a Plastic Scintillator-Based Active Shield for the ICARE-NG Radiation Monitor / M.Pinson, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1667-1674. - Bibliogr.:21.
https://doi.org/10.1109/TNS.2022.3180555
20. Takai, S. Experimental Study on the Localization and Estimation of Radioactivity in Concrete Rubble Using Image Reconstruction Algorithms / S.Takai, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1789-1799. - Bibliogr.:27.
https://doi.org/10.1109/TNS.2022.3181241

С 344.3 - Ядерная электроника

21. Mishu, P.K.C. Voltage-Controlled Oscillator Utilizing Inverse-Mode SiGe-HBT Biasing Circuit for the Mitigation of Single-Event Effects / P.K.C.Mishu, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1242-1248. - Bibliogr.:27.
https://doi.org/10.1109/TNS.2022.3170377
22. Weber, A. High-Voltage CMOS Active Pixel Sensor Chip With Counting Electronics for Beam Monitoring / A.Weber, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1288-1298. - Bibliogr.:18.
https://doi.org/10.1109/TNS.2022.3173807
23. Wu, J. Register-Like Storage Block Used as Histograms, Cluster Buffers, and Hough Transform Accumulators for HEP Trigger Systems / J.Wu, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1280-1287. - Bibliogr.:14.
https://doi.org/10.1109/TNS.2022.3175944

С 344.4б - Методы приготовления тонких пленок

24. Da Costa Lopes, I. Bridging RHA Methodology from Component to System Level Applied to System-on-Modules / I.Da Costa Lopes, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1747-1756. - Bibliogr.:41.
https://doi.org/10.1109/TNS.2022.3143862

С 345 - Ускорители заряженных частиц

25. Lerner, G. Analysis of the Photoneutron Field Near the THz Dump of the CLEAR Accelerator at CERN with SEU Measurements and Simulations / G.Lerner, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1541-1548. - Bibliogr.:22.
https://doi.org/10.1109/TNS.2022.3157404

С 348 - Ядерные реакторы. Реакторостроение

26. Ghninou, H. Characterization of Neutron Reaction Rates in Different Irradiation Channels of the CNESTEN’s TRIGA Mark II Research Reactor / H.Ghninou, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1806-1814. - Bibliogr.:12.
https://doi.org/10.1109/TNS.2022.3174673
27. Zhang, X. Design of an Output Feedback Pressurizer Controller with a Decoupling Precompensator for PWRs / X.Zhang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1712-1724. - Bibliogr.:33.
https://doi.org/10.1109/TNS.2022.3183994

С 349 - Дозиметрия и физика защиты

28. Brahme, A. Quantifying Cellular Repair, Misrepair and Apoptosis Induced by Boron Ions, Gamma Rays and PRIMA-1 Using the RHR Formulation / A.Brahme // Radiation Research. – 2022. – Vol.198, No.3. – P.271-296. - Bibliogr.:75.
https://doi.org/10.1667/RADE-22-00011.1
29. Francois, K. Assessment of Natural Radiation Exposure Due to 222Rn and External Radiation Sources: Case of the Far North, Cameroon / K.Francois, [et al.] // Health Physics. – 2022. – Vol.123, No.6. – P.444-456. - Bibliogr.:p.455-456.
https://doi.org/10.1097/HP.0000000000001609
30. Glover, L. Side Effects and Complications Associated with Treating Plutonium Intakes: A Retrospective Review of the Medical Records of LANL Employees Treated for Plutonium Intakes, with Supplementary Interviews / L.Glover, [et al.] // Health Physics. – 2022. – Vol.123, No.5. – P.348-357. - Bibliogr.:p.356-357.
https://doi.org/10.1097/HP.0000000000001603
31. Lebel, L. In-Situ Field Gamma Spectrometry in a Radionuclide Air Sampler / L.Lebel, [et al.] // Health Physics. – 2022. – Vol.123, No.4. – P.295-303. - Bibliogr.:p.302-303.
https://doi.org/10.1097/HP.0000000000001595
32. Lewis, R.K. Residential Homes with Extremely High Indoor Radon Concentrations in Southern Lehigh County, Pennsylvania / R.K.Lewis, [et al.] // Health Physics. – 2022. – Vol.123, No.5. – P.360-364. - Bibliogr.:p.363-364.
https://doi.org/10.1097/HP.0000000000001604
33. Lindsay, R. Pilot Study of Thoron Concentration in an Underground Thorium Mine / R.Lindsay, [et al.] // Health Physics. – 2022. – Vol.123, No.4. – P.315-321. - Bibliogr.:p.320-321.
https://doi.org/10.1097/HP.0000000000001598
34. Pramberger, D. Characterization of Radio-Photo-Luminescence (RPL) Dosimeters as Radiation Monitors in the CERN Accelerator Complex / D.Pramberger, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1618-1624. - Bibliogr.:24.
https://doi.org/10.1109/TNS.2022.3174784
35. Saviotti, A. Implementation of an In Vitro Experimental Setup Simulating Pulmonary Dissolution Following the Inhalation of Radioactive Particulate Material / A.Saviotti, [et al.] // Health Physics. – 2022. – Vol.123, No.5. – P.365-375. - Bibliogr.:p.375.
https://doi.org/10.1097/HP.0000000000001610
36. Scialdone, A. FPGA Qualification and Failure Rate Estimation Methodology for LHC Environments Using Benchmarks Test Circuits / A.Scialdone, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1633-1641. - Bibliogr.:23.
https://doi.org/10.1109/TNS.2022.3162037
37. Simerl, N. Aerial and Collimated Sensor Radiological Mapping Following Dispersal of Activated Potassium Bromide / N.Simerl, [et al.] // Health Physics. – 2022. – Vol.123, No.4. – P.267-277. - Bibliogr.:p.276-277.
https://doi.org/10.1097/HP.0000000000001591
38. Zhang, S. Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios / S.Zhang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1194-1202. - Bibliogr.:32.
https://doi.org/10.1109/TNS.2022.3176586
39. Zimmaro, A. Testing and Validation Methodology for a Radiation Monitoring System for Electronics in Particle Accelerators / A.Zimmaro, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1642-1650. - Bibliogr.:31.
https://doi.org/10.1109/TNS.2022.3158527

С 349 а - Дозиметрия различных видов излучения. Абсолютные измерения потоков

40. Abdelrahman, F.M. EPR Investigation of Temporal and Thermal Stability of Irradiated Sweeteners / F.M.Abdelrahman, R.B.Hayes // Health Physics. – 2022. – Vol.123, No.6. – P.476-485. - Bibliogr.:p.484-485.
https://doi.org/10.1097/HP.0000000000001614
41. Bernardini, G.F.P. Comparison of Photon Isoeffective Dose Models Based on In Vitro and In Vivo Radiobiological Experiments for Head and Neck Cancer Treated with BNCT / G.F.P.Bernardini, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.134-144. - Bibliogr.:32.
https://doi.org/10.1667/RADE-21-00234.1
42. Blain, G. Proton Irradiations at Ultra-High Dose Rate vs. Conventional Dose Rate: Strong Impact on Hydrogen Peroxide Yield / G.Blain, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.318-324. - Bibliogr.:32.
https://doi.org/10.1667/RADE-22-00021.1
43. Chow, B. Uncertainties Associated with Clonogenic Assays Using a Cs-137 Irradiator and Ir-192 Afterloader: A Comprehensive Compilation for Radiation Researchers / B.Chow, [et al.] // Radiation Research. – 2022. – Vol.198, No.1. – P.40-56. - Bibliogr.:67.
https://doi.org/10.1667/RADE-21-00205.1
44. Drozdovitch, V. Reliability of Questionnaire-Based Dose Reconstruction: Human Factor Uncertainties in the Radiation Dosimetry of Chernobyl Cleanup Workers / V.Drozdovitch, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.172-180. - Bibliogr.:28.
https://doi.org/10.1667/RADE-21-00207.1
45. Griffin, K.T. Specific Absorbed Fractions for Spontaneous Fission Neutron Emitters in the ICRP Reference Pediatric Voxel Phantom Series / K.T.Griffin, [et al.] // Health Physics. – 2022. – Vol.123, No.4. – P.278-286. - Bibliogr.:p.286.
https://doi.org/10.1097/HP.0000000000001594
46. Hunter, N. Extended Analysis of Solid Cancer Incidence Among the Nuclear Industry Workers in the UK: 1955–2011 / N.Hunter, [et al.] // Radiation Research. – 2022. – Vol.198, No.1. – P.1-17. - Bibliogr.:40.
https://doi.org/10.1667/RADE-20-00269.1
47. Kudo, S. A Risk Comparison of Non-Cancer Mortality between Lifestyle, Socioeconomic Status, and Radiation Among Japanese Nuclear Workers (J-EPISODE) / S.Kudo, [et al.] // Health Physics. – 2022. – Vol.123, No.6. – P.464-475. - Bibliogr.:p.474-475.
https://doi.org/10.1097/HP.0000000000001613
48. Kusumoto, T. Radiation Chemical Yields of 7-Hydroxy-Coumarin-3-Carboxylic Acid for Proton- and Carbon-Ion Beams at Ultra-High Dose Rates: Potential Roles in FLASH Effects / T.Kusumoto, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.255-262. - Bibliogr.:44.
https://doi.org/10.1667/RADE-21-00.230.1
49. Luoni, F. Dose Attenuation in Innovative Shielding Materials for Radiation Protection in Space: Measurements and Simulations / F.Luoni, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.107-119. - Bibliogr.:45.
https://doi.org/10.1667/RADE-22-00147.1
50. Prelipcean, D. Benchmark between Measured and Simulated Radiation Level Data at the Mixed-Field CHARM Facility at CERN / D.Prelipcean, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1557-1564. - Bibliogr.:40.
https://doi.org/10.1109/TNS.2022.3169756
51. Recca, K. Evaluation of Patient Transmission Factor Following the Administration of 177Lu-DOTATATE / K.Recca, [et al.] // Health Physics. – 2022. – Vol.123, No.6. – P.457-463. - Bibliogr.:p.463.
https://doi.org/10.1097/HP.0000000000001611
52. Van Slyke, A.L. Oxygen Monitoring in Model Solutions and In Vivo in Mice During Proton Irradiation at Conventional and FLASH Dose Rates / A.L.Van Slyke, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.181-189. - Bibliogr.:37.
https://doi.org/10.1667/RADE-21-00232.1
53. Wilson, S. Practical Tools for Patient-Specific Characterization and Dosimetry of Radiopharmaceutical Extravasation / S.Wilson, [et al.] // Health Physics. – 2022. – Vol.123, No.5. – P.343-347. - Bibliogr.:p.346-347.
https://doi.org/10.1097/HP.0000000000001600

С 349 д - Биологическое действие излучений

54. Aalam, S.M.M. Characterization of Transgenic NSG-SGM3 Mouse Model of Precision Radiation-Induced Chronic Hyposalivation / S.M.M.Aalam, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.243-254. - Bibliogr.:79.
https://doi.org/10.1667/RADE-21-00237.1
55. Bertolet, A. Impact of DNA Geometry and Scoring on Monte Carlo Track-Structure Simulations of Initial Radiation-Induced Damage / A.Bertolet, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.207-220. - Bibliogr.:71.
https://doi.org/10.1667/RADE-21-00179.1
56. Bouchet, A. Meloxicam Can Potentiate the Therapeutic Effects of Synchrotron Microbeam Radiation Therapy on High-Grade Glioma Bearing Rats / A.Bouchet, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.655-661. - Bibliogr.:39.
https://doi.org/10.1667/RADE-21-00107.1
57. Broustas, C.G. Effect of the p38 Mitogen-Activated Protein Kinase Signaling Cascade on Radiation Biodosimetry / C.G.Broustas, [et al.] // Radiation Research. – 2022. – Vol.198, No.1. – P.18-27. - Bibliogr.:53.
https://doi.org/10.1667/RADE-21-00240.1
58. Fahl, W.E. Significant Reduction of Total-Body Irradiation-Induced Death in Mice Treated with PrC-210 24 Hours Postirradiation / W.E.Fahl, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.263-270. - Bibliogr.:19.
https://doi.org/10.1667/RADE-22-00036.1
59. Fujiwara, M. Hypoxanthine Reduces Radiation Damage in Vascular Endothelial Cells and Mouse Skin by Enhancing ATP Production Via the Salvage Pathway / M.Fujiwara, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.583-593. - Bibliogr.:49.
https://doi.org/10.1667/RADE-21-00223.1
60. Fukunaga, H. Molecular Interactions of Normal and Irradiated Tubulins During Polymerization / H.Fukunaga, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.200-203. - Bibliogr.:21.
https://doi.org/10.1667/RADE-21-00073.1
61. Furusawa, Y. Ultrasound-Induced DNA Damage and Cellular Response: Historical Review, Mechanisms Analysis, and Therapeutic Implications / Y.Furusawa, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.662-672. - Bibliogr.:103.
https://doi.org/10.1667/RADE-21-00140.1.S1
62. Gao, L. Transformed Cell Ratio (TCR): A Novel Parameter for Radiation Dose Estimation in Rapid Premature Chromosome Condensation (PCC) Assay Induced by 0–40 Gy Co-60 Gamma Rays / L.Gao, [et al.] // Health Physics. – 2022. – Vol.123, No.6. – P.492-496. - Bibliogr.:p.495-496.
https://doi.org/10.1097/HP.0000000000001616
63. Geng, F. Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs / F.Geng, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.306-317. - Bibliogr.:107.
https://doi.org/10.1667/RADE-22-00058.1
64. Guo, Z. Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons / Z.Guo, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.569-582. - Bibliogr.:54.
https://doi.org/10.1667/RADE-21-00181.1
65. Hadid-Beurrier, L. Cumulative Radiation Exposure in Covid-19 Patients Admitted to the Intensive Care Unit / L.Hadid-Beurrier, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.605-612. - Bibliogr.:37.
https://doi.org/10.1667/RADE-21-00203.1
66. Hamade, D.F. Lactobacillus Reuteri Releasing IL-22 (LR-IL-22) Facilitates Intestinal Radioprotection for Whole-Abdomen Irradiation (WAI) of Ovarian Cancer / D.F.Hamade, [et al.] // Radiation Research. – 2022. – Vol.198, No.1. – P.89-105. - Bibliogr.:59.
https://doi.org/10.1667/RADE-21-00224.1
67. Jiao, Y. Radiation-Induced Cell Death and Its Mechanisms / Y.Jiao, [et al.] // Health Physics. – 2022. – Vol.123, No.5. – P.376-386. - Bibliogr.:p.384-386.
https://doi.org/10.1097/HP.0000000000001601
68. Kiang, J.G. Female Mice Are More Resistant to the Mixed-Field (67% Neutron + 33% Gamma) Radiation-Induced Injury in Bone Marrow and Small Intestine than Male Mice Due to Sustained Increases in G-CSF and the Bcl-2/Bax Ratio and Lower miR-34a and MAPK Activation / J.G.Kiang, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.120-133. - Bibliogr.:55.
https://doi.org/10.1667/RADE-21-00201.1
69. Kim, H. The Efficacy of Radiation is Enhanced by Metformin and Hyperthermia Alone or Combined Against FSaII Fibrosarcoma in C3H Mice / H.Kim, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.190-199. - Bibliogr.:70.
https://doi.org/10.1667/RADE-21-00231.1
70. Kundapur, V. Is Mini Beam Ready for Human Trials? Results of Randomized Study of Treating De-Novo Brain Tumors in Canines Using Linear Accelerator Generated Mini Beams / V.Kundapur, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.162-171. - Bibliogr.:39.
https://doi.org/10.1667/RADE-21-00093.1
71. Kuo, H.-C. The p53 Transactivation Domain 1-Dependent Response to Acute DNA Damage in Endothelial Cells Protects Against Radiation-Induced Cardiac Injury / H.-C.Kuo, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.145-153. - Bibliogr.:24.
https://doi.org/10.1667/RADE-22-00001.1
72. Li, Y. Effects of Low-Dose Splenic Irradiation on T Lymphocyte Immune Function / Y.Li, [et al.] // Health Physics. – 2022. – Vol.123, No.6. – P.486-491. - Bibliogr.:p.490-491.
https://doi.org/10.1097/HP.0000000000001615
73. Pannkuk, E.L. Small Molecule Signatures of Mice Lacking T-Cell p38 Alternate Activation, a Model for Immunosuppression Conditions, after Total-Body Irradiation / E.L.Pannkuk, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.613-625. - Bibliogr.:73.
https://doi.org/10.1667/RADE-21-00199.1
74. Patterson, A.M. Age and Sex Divergence in Hematopoietic Radiosensitivity in Aged Mouse Models of the Hematopoietic Acute Radiation Syndrome / A.M.Patterson, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.221-242. - Bibliogr.:109.
https://doi.org/10.1667/RADE-22-00071.1
75. Rapic, S. Assessing the Accuracy of Bioluminescence Image-Guided Stereotactic Body Radiation Therapy of Orthotopic Pancreatic Tumors Using a Small Animal Irradiator / S.Rapic, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.626-637. - Bibliogr.:53.
https://doi.org/10.1667/RADE-21-00161.1
76. Ton, S.T. Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression / S.T.Ton, [et al.] // Radiation Research. – 2022. – Vol.198, No.1. – P.28-39. - Bibliogr.:74.
https://doi.org/10.1667/RADE-21-00021.1
77. Villagomez-Bernabe, B. Fast Ion-Beam Inactivation of Viruses, Where Radiation Track Structure Meets RNA Structural Biology / B.Villagomez-Bernabe, [et al.] // Radiation Research. – 2022. – Vol.198, No.1. – P.68-80. - Bibliogr.:34.
https://doi.org/10.1667/RADE-21-00133.1
78. Wu, A. Downregulation of Long Noncoding RNA CRYBG3 Enhances Radiosensitivity in Non-Small Cell Lung Cancer Depending on p53 Status / A.Wu, [et al.] // Radiation Research. – 2022. – Vol.198, No.3. – P.297-305. - Bibliogr.:33.
https://doi.org/10.1667/RADE-21-00197.1
79. Yao, Y. Altered DNA Methylation and Gene Expression Profiles in Radiation-Induced Heart Fibrosis of Sprague-Dawley Rats / Y.Yao, [et al.] // Radiation Research. – 2022. – Vol.198, No.2. – P.154-161. - Bibliogr.:37.
https://doi.org/10.1667/RADE-20-00130.1
80. Yu, H. Establishment of a Method for Investigating Direct and Indirect Actions of Ionizing Radiation Using Scavenger-Free Plasmid DNA / H.Yu, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.594-604. - Bibliogr.:59.
https://doi.org/10.1667/RADE-21-00057.1
81. Zeng, X. Satellite Cells Are Activated in a Rat Model of Radiation-Induced Muscle Fibrosis / X.Zeng, [et al.] // Radiation Research. – 2022. – Vol.197, No.6. – P.638-649. - Bibliogr.:52.
https://doi.org/10.1667/RADE-21-00183.1

С 349.1 - Действие излучения на материалы

82. Allanche, T. In Situ Optical Characterization of Bulk Optical Glasses Under Protons and X-Rays / T.Allanche, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1492-1499. - Bibliogr.:36.
https://doi.org/10.1109/TNS.2022.3151964
83. Antonsanti, A. Probing Dark Current Random Telegraph Signal in a Small Pitch Vertically Pinned Photodiode CMOS Image Sensor After Proton Irradiation / A.Antonsanti, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1506-1514. - Bibliogr.:28.
https://doi.org/10.1109/TNS.2022.3160056
84. Aubry, M. Optimization of the Radiation Response of Backup Optical Fiber Amplifiers for Space Missions / M.Aubry, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1500-1505. - Bibliogr.:34.
https://doi.org/10.1109/TNS.2022.3142953
85. Badia, J.M. Reliability Evaluation of LU Decomposition on GPU-Accelerated System-on-Chip Under Proton Irradiation / J.M.Badia, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1467-1474. - Bibliogr.:31.
https://doi.org/10.1109/TNS.2022.3155820
86. Bagatin, M. Secondary Particles Generated by Protons in 3-D NAND Flash Memories / M.Bagatin, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1461-1466. - Bibliogr.:23.
https://doi.org/10.1109/TNS.2022.3171521
87. Bonaldo, S. TID Effects in Highly Scaled Gate-All-Around Si Nanowire CMOS Transistors Irradiated to Ultrahigh Doses / S.Bonaldo, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1444-1452. - Bibliogr.:53.
https://doi.org/10.1109/TNS.2022.3142385
88. Bricas, G. FPGA Benchmarking Structures Dedicated to TID Parametric Degradation Evaluation / G.Bricas, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1453-1460. - Bibliogr.:16.
https://doi.org/10.1109/TNS.2022.3180107
89. Campanella, C. Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber / C.Campanella, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1515-1520. - Bibliogr.:36.
https://doi.org/10.1109/TNS.2022.3150870
90. Dewitte, H. Hours-Long Transient Leakage Current in MOS Structures Induced by High Total-Ionizing-Dose / H.Dewitte, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1428-1436. - Bibliogr.:33.
https://doi.org/10.1109/TNS.2022.3150407
91. Garcia-Astudillo, L.A. Analyzing Scaled Reduced Precision Redundancy for Error Mitigation Under Proton Irradiation / L.A.Garcia-Astudillo, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1485-1891. - Bibliogr.:17.
https://doi.org/10.1109/TNS.2022.3147599
92. Hansen, D.L. Proton Cross-Sections from Heavy-Ion Data: A Review of the Models / D.L.Hansen, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1475-1484. - Bibliogr.:78.
https://doi.org/10.1109/TNS.2021.3131910
93. Lalovic, M. Ionizing Radiation Effects in Silicon Photonics Modulators / M.Lalovic, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1521-1526. - Bibliogr.:19.
https://doi.org/10.1109/TNS.2022.3148579
94. Li, L. Ionization Radiation-Induced Base Current Decreasing and Narrowing Effects in Gated Bipolar Transistors / L.Li, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1733-1746. - Bibliogr.:37.
https://doi.org/10.1109/TNS.2022.3177269
95. Ma, T. Increased Device Variability Induced by Total Ionizing Dose in 16-nm Bulk nFinFETs / T.Ma, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1437-1443. - Bibliogr.:38.
https://doi.org/10.1109/TNS.2022.3170937
96. Salomone, L.S. Modeling Switched Bias Irradiations on Floating Gate Devices: Application to Dosimetry / L.S.Salomone, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1229-1234. - Bibliogr.:46.
https://doi.org/10.1109/TNS.2022.3173206
97. Toguchi, S. Effects of Layer-to-Layer Coupling on the Total-Ionizing-Dose Response of 3-D-Sequentially Integrated FD-SOI MOSFETs / S.Toguchi, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1420-1427. - Bibliogr.:40.
https://doi.org/10.1109/TNS.2021.3138020
98. Wang, Y. A Comparative Study on Heavy-Ion Irradiation Impact on p-Channel and n-Channel Power UMOSFETs / Y.Wang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1249-1256. - Bibliogr.:30.
https://doi.org/10.1109/TNS.2022.3175954

Ц 849 - Искусственный интеллект. Теория и практика

99. Glenski, M. Learning Global Proliferation Expertise Evolution Using AI-Driven Analytics and Public Information / M.Glenski, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1375-1384. - Bibliogr.:46.
https://doi.org/10.1109/TNS.2022.3162216


СПИСОК ПРОСМОТРЕННЫХ ЖУРНАЛОВ


1. Health Physics. – 2022. – Vol.123, No.4. – P.267-342.
2. Health Physics. – 2022. – Vol.123, No.5. – P.343-416.
3. Health Physics. – 2022. – Vol.123, No.6. – P.417-510.
4. IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.6. – P.1193-1412.
5. IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.1. – P.1413-1700.
6. IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.7, Pt.2. – P.1701-1816.
7. Radiation Research. – 2022. – Vol.197, No.6. – P.569-678.
8. Radiation Research. – 2022. – Vol.198, No.1. – P.1-106.
9. Radiation Research. – 2022. – Vol.198, No.2. – P.107-206.
10. Radiation Research. – 2022. – Vol.198, No.3. – P.207-324.