Информационный бюллетень «Статьи» № 21 22.05.2023

С 132 - Математический анализ

1. Геворкян, Г.Г. О единственности рядов Франклина со сходящейся подпоследовательностью частичных сумм / Г.Г.Геворкян // Математический сборник. – 2023. – Т.214, №2. – С.58-71. - Библиогр.:24.
https://doi.org/10.4213/sm9741
2. Жуковский, Е.С. Геометрические прогрессии в пространствах с расстоянием, приложения к неподвижным точкам и точкам совпадения отображений / Е.С.Жуковский // Математический сборник. – 2023. – Т.214, №2. – С.112-142. - Библиогр.:29.
https://doi.org/10.4213/sm9773

С 133 - Дифференциальные и интегральные уравнения

3. Дымов, А.В. Асимптотические разложения для одного класса сингулярных интегралов, возникающих в нелинейных волновых системах / А.В.Дымов // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.179-197. - библиогр.:12.
https://doi.org/10.4213/tmf10356

С 133.2 - Уравнения математической физики

4. Ваджахат А. Риаз, Х. Некоммутативное обобщение и квазиграмианные решения уравнения Хироты / Х.Ваджахат А. Риаз // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.223-238. - Библиогр.:31.
https://doi.org/10.4213/tmf10347
5. Насибов, Ш.М. Об одном интерполяционном неравенстве и о его приложении к уравнению Бюргерса / Ш.М.Насибов // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.239-242. - Библиогр.:6.
https://doi.org/10.4213/tmf10359
6. Хасанов, А.Б. Интегрирование модифицированного уравнения Кортевега–де Фриза–синус-Гордона в классе периодических бесконечнозонных функций / А.Б.Хасанов // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.198-210. - Библиогр.:33.
https://doi.org/10.4213/tmf10365

С 138 - Геометрия. Риманова геометрия. Геометрия Лобачевского

7. Александров, С.А. Об объемах гиперболических прямоугольных многогранников / С.А.Александров, [и др.] // Математический сборник. – 2023. – Т.214, №2. – С.3-22. - Библиогр.:23.
https://doi.org/10.4213/sm9740

С 139 - Топология

8. Ведюшкина, В.В. Классификация слоений Лиувилля интегрируемых топологических биллиардов в магнитном поле / В.В.Ведюшкина, С.Е.Пустовойтов // Математический сборник. – 2023. – Т.214, №2. – С.23-57. - Библиогр.:13.
https://doi.org/10.4213/sm9770

С 17 - Вычислительная математика. Таблицы

9. Mondaini, R. Quantum Critical Points and the Sign Problem / R.Mondaini, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.418-424. - Bibliog.:63.
https://doi.org/10.1126/science.abg9299

С 3 - Физика

10. Bax, A. Richard R. Ernst (14.08.1933 - 04.06.2021) / A.Bax, R.Bruschweiler // Physics Today. – 2022. – Vol.75, No.2. – P.59.
https://doi.org/10.1063/PT.3.4946
11. Clery, D. European Fusion Reactor Sets Record for Sustained Energy / D.Clery // Science. – 2022. – Vol.375, No.6581. – P.600.
https://doi.org/10.1126/science.ada1098
12. Jacobs, P.M. Arthur Poskanzer (28.06.1931 - 30.06.2021) / P.M.Jacobs // Physics Today. – 2022. – Vol.75, No.2. – P.60.
https://doi.org/10.1063/PT.3.4947

С 323 - Квантовая механика

13. Conover, E. Eerie Quantum Effect Confirmed / E.Conover // Science News. – 2022. – Vol.201, No.3. – P.10-11.
https://www.sciencenews.org/article/quantum-particles-gravity-spacetime-aharonov-bohm-effect
14. Тамбурини, Ф. Башня Майораны и интерпретация квантовой механики в терминах клеточного автомата вплоть до планковского масштаба / Ф.Тамбурини, И.Ликата // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.308-317. - Библиогр.:36.
https://doi.org/10.4213/tmf10375

С 323.1 - Релятивистские волновые уравнения. Уравнения типа Бете-Солпитера. Квазипотенциал

15. Ботиров, Г.И. Меры Гиббса для модели Поттса со счетным множеством значений спина на дереве Кэли / Г.И.Ботиров, З.Э.Мустафоева // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.318-328. - Библиогр.:12.
https://doi.org/10.4213/tmf10353

С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки


16. Алексеев, О.В. Многоточечные вероятности прохождения и функции Грина для SLE 8/3 / О.В.Алексеев // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.243-267. - Библиогр.:17.
https://doi.org/10.4213/tmf10360

С 325 - Статистическая физика и термодинамика

17. Berdyugin, A.I. Out-of-Equilibrium Criticalities in Graphene Superlattices / A.I.Berdyugin, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.430-433. - Bibliogr.:35.
https://doi.org/10.1126/science.abi8627
18. Lin, J.-X. Spin-Orbit–Driven Ferromagnetism at Half Moire Filling in Magic-Angle Twisted Bilayer Graphene / J.-X.Lin, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.437-441. - Bibliogr.:43.
https://doi.org/10.1126/science.abh2889
19. Олимов, У.Р. Неподвижные точки бесконечномерного оператора, связанного с мерами Гиббса / У.Р.Олимов, У.А.Розиков // Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.329-344. - Библиогр.:22.
https://doi.org/10.4213/tmf10331

С 332 - Электромагнитные взаимодействия

20. Weaver, S.W. Astrochemistry in the Terahertz Gap / S.W.Weaver // Physics Today. – 2022. – Vol.75, No.2. – P.28-33. - Bibliogr.:12.
https://doi.org/10.1063/PT.3.4939

С 344.1 - Методы и аппаратура для регистрации элементарных частиц и фотонов

21. Cazzaniga, C. Measurements of Low-Energy Protons Using a Silicon Detector for Application to SEE Testing / C.Cazzaniga, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.485-490. - Bibliogr.:34.
https://doi.org/10.1109/TNS.2021.3123814
22. Lucsanyi, D. G4SEE: A Geant4-Based Single Event Effect Simulation Toolkit and Its Validation Through Monoenergetic Neutron Measurements / D.Lucsanyi, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.273-281. - Bibliogr.:34.
https://doi.org/10.1109/TNS.2022.3149989
23. Qiu, M. Digital Stabilization Algorithm for the Gamma Spectra of Scintillator Detectors in PGNAA / M.Qiu, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.113-117. - Bibliogr.:22.
https://doi.org/10.1109/TNS.2021.3139391
24. Tao, Y. Enhanced Surface Passivation by Atomic Layer-Deposited Al 2 O 3 for Ultraviolet-Sensitive Silicon Photomultipliers / Y.Tao, A.Erickson // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.187-191. - Bibliogr.:29.
https://doi.org/10.1109/TNS.2022.3141991

С 349 - Дозиметрия и физика защиты

25. Akazawa, Y. End of an Era of Sample Collection for the Nagasaki Atomic Bomb Survivor's Tumor Tissue Bank / Y.Akazawa, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.323-325. - Bibliogr.:4.
https://doi.org/10.1667/RADE-21-00058.1
26. Hoarau, G. Impact of the Coarse Indoor Non-Radioactive Aerosols on the Background Radon Progenies’ Compensation of a Continuous Air Monitor / G.Hoarau, [et al.] // Health Physics. – 2022. – Vol.122, No.5. – P.563-574. - Bibliogr.:p.573-574.
https://doi.org/10.1097/HP.0000000000001530
27. Hoffmeyer, M.R. Making the Case for Absorbed Radiation Response Biodosimetry – Utility of a High-Throughput Biodosimetry System / M.R.Hoffmeyer, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.535-546. - Bibliogr.:40.
https://doi.org/10.1667/RADE-20-00029.1
28. Kudo, S. A Risk Comparison between Lifestyle, Socioeconomic Status, and Radiation: A Cohort Study of Cancer Mortality among Japanese Nuclear Workers (J-EPISODE) / S.Kudo, [et al.] // Health Physics. – 2022. – Vol.122, No.4. – P.469-479. - Bibliogr.:p.479.
https://doi.org/10.1097/HP.0000000000001525
29. Kumari, P. Analytical Bit-Error Model of NAND Flash Memories for Dosimetry Application / P.Kumari, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.478-484. - Bibliogr.:25.
https://doi.org/10.1109/TNS.2021.3125652
30. Le Roux, R. The Effect of the Coal Industry on Indoor Radon Concentrations in eMalahleni, Mpumalanga Province of South Africa / R.Le Roux // Health Physics. – 2022. – Vol.122, No.4. – P.488-494. - Bibliogr.:p.493-494.
https://doi.org/10.1097/HP.0000000000001526
31. Pan, V.A. Application of an SOI Microdosimeter for Monitoring of Neutrons in Various Mixed Radiation Field Environments / V.A.Pan, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.491-500. - Bibliogr.:25.
https://doi.org/10.1109/TNS.2021.3125999
32. Rosenstrom, A. Dose Coefficient Calculation for Use in Dosimetry Assessment of a Fission-Based Weapon / A.Rosenstrom, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.272-283. - Bibliogr.:34.
https://doi.org/10.1667/RADE-21-00012.1
33. Satyamitra, M. Challenges and Strategies in the Development of Radiation Biodosimetry Tests for Patient Management / M.Satyamitra, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.455-467. - Bibliogr.:64.
https://doi.org/10.1667/RADE-21-00072.1
34. Welsh, J.S. Ramsar, Iran, as a Natural Radiobiological Surrogate for Mars / J.S.Welsh, [et al.] // Health Physics. – 2022. – Vol.122, No.4. – P.508-512. - Bibliogr.:p.512.
https://doi.org/10.1097/HP.0000000000001521
35. Zheltonozhskyi, V.A. Investigation of Radionuclide Migration at Sites Adjacent to the 30-km Exclusion Zone of the Chernobyl Nuclear Power Plant / V.A.Zheltonozhskyi, [et al.] // Health Physics. – 2022. – Vol.122, No.4. – P.502-507. - Bibliogr.:p.507.
https://doi.org/10.1097/HP.0000000000001529

С 349 а - Дозиметрия различных видов излучения. Абсолютные измерения потоков

36. Barbosa, N. Discharges of Nuclear Medicine Radioisotopes: The Impact of an Abatement System / N.Barbosa, [et al.] // Health Physics. – 2022. – Vol.122, No.5. – P.586-593. - Bibliogr.:p.592-593.
https://doi.org/10.1097/HP.0000000000001543
37. Capaccio, C. CytoRADx: A High-Throughput, Standardized Biodosimetry Diagnostic System Based on the Cytokinesis-Block Micronucleus Assay / C.Capaccio, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.523-534. - Bibliogr.:26.
https://doi.org/10.1667/RADE-20-00030.1
38. Ghandhi, S.A. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure to 137Cs. Part 1: Global Transcriptomic Responses in Blood / S.A.Ghandhi, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.478-490. - Bibliogr.:52.
https://doi.org/10.1667/RADE-20-00041
39. Harley, N.H. Radon-222 Brain Dosimetry / N.H.Harley, E.S.Robbins // Health Physics. – 2022. – Vol.122, No.5. – P.575-578. - Bibliogr.:p.578.
https://doi.org/10.1097/HP.0000000000001533
40. Laiakis, E.C. Small Molecule Responses to Sequential Irradiation with Neutrons and Photons for Biodosimetry Applications: An Initial Assessment / E.C.Laiakis, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.468-477. - Bibliogr.:39.
https://doi.org/10.1667/RADE-20-00032.1
41. Olson, C. Retrieval and Characterization of a Plutonium-Beryllium Source at the University of Utah / C.Olson // Health Physics. – 2022. – Vol.122, No.4. – P.480-487. - Bibliogr.p.486-487.
https://doi.org/10.1097/HP.0000000000001519
42. Shuryak, I. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry / I.Shuryak, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.491-500. - Bibliogr.:65.
https://doi.org/10.1667/RADE-20-00042.1
43. Xu, X. Assessment of Occupational Exposure in Medical Practice in the Region of Hohhot, China, for the Period 2004–2020 / X.Xu, [et al.] // Health Physics. – 2022. – Vol.122, No.4. – P.495-501. - Bibliogr.:p.500-501.
https://doi.org/10.1097/HP.0000000000001522
44. Yan, M. Investigation of Dose Rate Distribution in an Experimental Hall of a RIKEN Accelerator-Driven Compact Neutron Source Based on the 9Be(p, n) Reaction with 7 MeV Proton Injection / M.Yan, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.118-125. - Bibliogr.:25.
https://doi.org/10.1109/TNS.2022.3141130
45. Zhao, L. Improved Asymptotic Expansions in High- and Low-Dose Ranges for Generalized Multi-Hit Model of Radiation-Induced Cell Survival / L.Zhao, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.306-314. - Bibliogr.:27.
https://doi.org/10.1667/RADE-20-00227.1

С 349 д - Биологическое действие излучений

46. A Description of ICNIRP’S Independent, Best Practice System of Guidance on the Protection of People and the Environment from Exposure to Non-Ionizing Radiation // Health Physics. – 2022. – Vol.122, No.5. – P.625-628.
https://doi.org/10.1097/HP.0000000000001561
47. Epperly, M.W. Radiation-Induced Senescence in p16 +/LUC Mouse Lung Compared to Bone Marrow Multilineage Hematopoietic Progenitor Cells / M.W.Epperly, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.235-249. - Bibliogr.:61.
https://doi.org/10.1667/RADE-20-00286.1
48. Fuentes, A. Acute Radiation-Induced Hematopoietic Depletion Does Not Alter the Onset or Severity of Pneumonitis in Mice / A.Fuentes, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.297-305. - Bibliogr.:25.
https://doi.org/10.1667/RADE-20-00291.1
49. Killer, K. The Intracerebroventricular Injection of Murine Mesenchymal Stromal Cells Engineered to Secrete Epidermal Growth Factor Does Not Prevent Loss of Neurogenesis in Irradiated Mice / K.Killer, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.315-322. - Bibliogr.:28.
https://doi.org/10.1667/RADE-21-00017.1
50. Niu, S. Comparative Study of Radiation-Induced Lung Injury Model in Two Strains of Mice / S.Niu, [et al.] // Health Physics. – 2022. – Vol.122, No.5. – P.579-585. - Bibliogr.p.585.
https://doi.org/10.1097/HP.0000000000001532
51. Obata, Y. Expression of an X-Ray Irradiated EGFP-Expressing Plasmid Transfected into Nonirradiated Human Cells / Y.Obata, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.261-271. - Bibliogr.:38.
https://doi.org/10.1667/RR15399.1
52. Rogers, C.J. Identification of miRNA Associated with Reduced Survival after Whole-Thorax Lung Irradiation in Non-Human Primates / C.J.Rogers, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.510-522. - Bibliogr.:65.
https://doi.org/10.1667/RADE-20-00031.1
53. Rogers, C.J. Observation of Unique Circulating miRNA Signatures in Non-Human Primates Exposed to Total-Body vs. Whole Thorax Lung Irradiation / C.J.Rogers, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.547-559. - Bibliogr.:55.
https://doi.org/10.1667/RADE-21-00043.1
54. Royba, E. The RABiT-II DCA in the Rhesus Macaque Model / E.Royba, [et al.] // Radiation Research. – 2021. – Vol.196, No.5. – P.501-509. - Bibliogr.:33.
https://doi.org/10.1667/RR15547.1
55. Saunders II, J. Long-acting PGE 2 and Lisinopril Mitigate H-ARS / J.Saunders II, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.284-296. - Bibliogr.:72.
https://doi.org/10.1667/RADE-20-00113.1
56. Yu, D. Transplantation of the Stromal Vascular Fraction (SVF) Mitigates Severe Radiation-Induced Skin Injury / D.Yu, [et al.] // Radiation Research. – 2021. – Vol.196, No.3. – P.250-260. - Bibliogr.:48.
https://doi.org/10.1667/RADE-20-00156.1

С 349.1 - Действие излучения на материалы

57. Aviles, P.M. Radiation Testing of a Multiprocessor Macrosynchronized Lockstep Architecture With FreeRTOS / P.M.Aviles, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.462-469. - Bibliogr.:37.
https://doi.org/10.1109/TNS.2021.3129164
58. Buddhanoy, M. Total Ionizing Dose Effects on Long-Term Data Retention Characteristics of Commercial 3-D NAND Memories / M.Buddhanoy, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.390-396. - Bibliogr.:31.
https://doi.org/10.1109/TNS.2021.3124484
59. Cao, J. Total-Ionizing-Dose Effects on Polycrystalline-Si Channel Vertical-Charge-Trapping NAND Devices / J.Cao, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.314-320. - Bibliogr.:44.
https://doi.org/10.1109/TNS.2021.3133407
60. Chen, J. The Secondary Electron Collection Effect of Biased Printed Circuit Board Traces in Box IEMPs / J.Chen, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.143-151. - Bibliogr.:29.
https://doi.org/10.1109/TNS.2021.3139143
61. Clemente, J.A. Reliability of Error Correction Codes Against Multiple Events by Accumulation / J.A.Clemente, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.169-180. - Bibliogr.:51.
https://doi.org/10.1109/TNS.2022.3143652
62. Dewitte, H. Radiation-Induced Junction-Leakage Random-Telegraph-Signal / H.Dewitte, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.290-298. - Bibliogr.:28.
https://doi.org/10.1109/TNS.2021.3119456
63. Feeley, A. Effect of Frequency on Total Ionizing Dose Response of Ring Oscillator Circuits at the 7-nm Bulk FinFET Node / A.Feeley, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.327-332. - Bibliogr.:25.
https://doi.org/10.1109/TNS.2022.3144911
64. Garcia-Astudillo, L.A. Analyzing Reduced Precision Triple Modular Redundancy Under Proton Irradiation / L.A.Garcia-Astudillo, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.470-477. - Bibliogr.:23.
https://doi.org/10.1109/TNS.2022.3152088
65. Hanson, J. A Hybrid Analytic-Numerical Compact Model for Radiation Induced Photocurrent Effects / J.Hanson, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.160-168. - Bibliogr.:25.
https://doi.org/10.1109/TNS.2022.3144069
66. Hou, P. Low Energy Argon Ion Irradiation Effect on the -In 2 Se 3 Nanoflakes for Flexible Phototransistors / P.Hou, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.134-141. - Bibliogr.:52.
https://doi.org/10.1109/TNS.2021.3137271
67. Hu, C. Hadron-Induced Radiation Damage in LuAG:Ce Scintillating Ceramics / C.Hu, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.181-186. - Bibliogr.:22.
https://doi.org/10.1109/TNS.2021.3139050
68. Huang, Y. Total Ionizing Dose Radiation Effects Hardening Using Back-Gate Bias in Double-SOI Structure / Y.Huang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.453-461. - Bibliogr.:23.
https://doi.org/10.1109/TNS.2022.3145027
69. Lawrence, S.P. Effects of Total Ionizing Dose on SRAM Physical Unclonable Functions / S.P.Lawrence, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.349-358. - Bibliogr.:30.
https://doi.org/10.1109/TNS.2022.3146279
70. Li, T. Investigation on Transient Ionizing Radiation Effects in a 4-Mb SRAM with Dual Supply Voltages / T.Li, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.340-348. - Bibliogr.:24.
https://doi.org/10.1109/TNS.2022.3148441
71. Ludeke, S. Proton Direct Ionization in Sub-Micron Technologies: Numerical Method for RPP Parameter Extraction / S.Ludeke, A.Javanainen // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.254-262. - Bibliogr.:31.
https://doi.org/10.1109/TNS.2022.3147592
72. Ma, T. Influence of Fin and Finger Number on TID Degradation of 16-nm Bulk FinFETs Irradiated to Ultrahigh Doses / T.Ma, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.307-313. - Bibliogr.:28.
https://doi.org/10.1109/TNS.2021.3125769
73. Morana, A. Temperature Dependence of Low-Dose Radiation-Induced Attenuation of Germanium-Doped Optical Fiber at Infrared Wavelengths / A.Morana, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.512-517. - Bibliogr.:20.
https://doi.org/10.1109/TNS.2021.3133421
74. Rezaei, M. Impact of Dynamic Voltage Scaling on SEU Sensitivity of COTS Bulk SRAMs and A-LPSRAMs Against Proton Radiation / M.Rezaei, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.126-133. - Bibliogr.:37.
https://doi.org/10.1109/TNS.2022.3140473
75. Rony, M.W. Negative-Bias-Stress and Total-Ionizing-Dose Effects in Deeply Scaled Ge-GAA Nanowire pFETs / M.W.Rony, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.299-306. - Bibliogr.:98.
https://doi.org/10.1109/TNS.2022.3144204
76. Sharov, F.V. A Comparison of Radiation-Induced and High-Field Electrically Stress-Induced Interface Defects in Si/SiO 2 MOSFETs Via Electrically Detected Magnetic Resonance / F.V.Sharov, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.208-215. - Bibliogr.:37.
https://doi.org/10.1109/TNS.2022.3150979
77. Su, Z. Reliability Improvement on SRAM Physical Unclonable Function (PUF) Using an 8T Cell in 28 nm FDSOI / Z.Su, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.333-339. - Bibliogr.:27.
https://doi.org/10.1109/TNS.2021.3126587
78. Sui, W. Effects of Ion-Induced Displacement Damage on GaN/AlN MEMS Resonators / W.Sui, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.216-224. - Bibliogr.:33.
https://doi.org/10.1109/TNS.2022.3143550
79. Surendranathan, U. Total Ionizing Dose Effects on Read Noise of MLC 3-D NAND Memories / U.Surendranathan, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.321-326. - Bibliogr.:29.
https://doi.org/10.1109/TNS.2021.3140204
80. Tang, Y. Evolution and Mechanism of P-GaN Films Under Proton Irradiation and Its Influence on Electronic Device / Y.Tang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.225-231. - Bibliogr.:39.
https://doi.org/10.1109/TNS.2021.3128533
81. Teng, J.W. Response of Integrated Silicon Microwave Pin Diodes to X-Ray and Fast-Neutron Irradiation / J.W.Teng, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.282-289. - Bibliogr.:47.
https://doi.org/10.1109/TNS.2021.3119536
82. Vibbert, S.T. In Situ Measurement of TID-Induced Leakage Using On-Chip Frequency Modulation / S.T.Vibbert, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.367-373. - Bibliogr.:20.
https://doi.org/10.1109/TNS.2021.3135415
83. Watkins, A.C. Mitigating Total-Ionizing-Dose-Induced Threshold-Voltage Shifts Using Back-Gate Biasing in 22-nm FD-SOI Transistors / A.C.Watkins, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.374-380. - Bibliogr.:24.
https://doi.org/10.1109/TNS.2022.3146318
84. Zedric, R.M. The Effect of Radiation Damage on the Charge Collection Efficiency of Silicon Avalanche Photodiodes / R.M.Zedric, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.152-159. - Bibliogr.:33.
https://doi.org/10.1109/TNS.2021.3137476
85. Zhang, X. Comparison of Total Ionizing Dose Effects in SOI FinFETs Between Room and High Temperature / X.Zhang, [et al.] // IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.359-366. - Bibliogr.:37.
https://doi.org/10.1109/TNS.2021.3129784

С 45 - Физическая химия

86. Ramadoss, B. Remote Steric Control for Undirected Meta-Selective C–H Activation of Arenes / B.Ramadoss // Science. – 2022. – Vol.375, No.6581. – P.658-663. - Bibliogr.:37.
https://doi.org/10.1126/science.abm7599

С 63 - Астрофизика

87. Kruesi, L. Astronomers Find Another 'Cow' / L.Kruesi // Science News. – 2022. – Vol.201, No.3. – P.8.
https://www.sciencenews.org/article/x-ray-glow-cow-supernova-explosion-black-hole-neutron-star

001 - Наука

88. Гиренок, Ф. Неклассический классик [160 лет со дня рождения Владимира Ивановича Вернадского] / Ф.Гиренок // Химия и жизнь. – 2023. – №3. – С.26-31.
https://www.hij.ru/read/issues/2023/march/31027/

28.0 - Биология

89. Cao, D. Structure-Based Discovery of Nonhallucinogenic Psychedelic Analogs / D.Cao, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.403-411. - Bibliogr.:39.
https://doi.org/10.1126/science.abl8615
90. Eichmuller, O.L. Amplification of Human Interneuron Progenitors Promotes Brain Tumors and Neurological Defects / O.L.Eichmuller, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.401.
https://doi.org/10.1126/science.abf5546
91. Lee, K.Y. An Autonomously Swimming Biohybrid Fish Designed with Human Cardiac Biophysics / K.Y.Lee, [et al.] // Science. – 2022. – Vol.375, No.6581. – P.639-647. - Bibliogr.:45.
https://doi.org/10.1126/science.abh0474
92. Marklund, E. Sequence Specificity in DNA Binding is Mainly Governed by Association / E.Marklund, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.442-445. - Bibliogr.:23.
https://doi.org/10.1126/science.abg7427
93. Melani, R.D. The Blood Proteoform Atlas: A Reference Map of Proteoforms in Human Hematopoietic Cells / R.D.Melani, [et al.] // Science. – 2022. – Vol.375, No.6579. – P.411-418. - Bibliogr.:46.
https://doi.org/10.1126/science.aaz5284
94. Saey, T.H. Reading Our Genes / T.H.Saey // Science News. – 2022. – Vol.201, No.3. – P.22-28.
https://www.sciencenews.org/article/human-genome-project-dna-genetics-revolution-green
95. So, C. Mechanism of Spindle Pole Organization and Instability in Human Oocytes / C.So, [et al.] // Science. – 2022. – Vol.375, No.6581. – P.631.
https://doi.org/10.1126/science.abj3944
96. Баркова, И.А. Эндолизины бактериофагов / И.А.Баркова, [и др.] // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2023. – Т.100, №1. – С.126-134. - Библиогр.:51.
https://doi.org/10.36233/0372-9311-250
97. Костин, Р.К. Микробиота желудочно-кишечного тракта и канцерогенез в различных органах человека / Р.К.Костин, [и др.] // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2023. – Т.100, №1. – С.110-125. - Библиогр.:89.
https://doi.org/10.36233/0372-9311-310
98. Резник, Н.Л. Токсоплазма - спекуляции о манипуляциях / Н.Л.Резник // Химия и жизнь. – 2023. – №3. – С.38-43.
https://www.hij.ru/read/issues/2023/march/31029/
99. Филиппова, Е.И. Исследование противовирусной активности водорастворимого меланина из аптечной чаги (Inonotus Obliquus) в отношении вируса гриппа A субтипов H5N1, H3N2 и H1N1pdm09 в экспериментах in Vitro / Е.И.Филиппова, [и др.] // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2023. – Т.100, №1. – С.103-109. - Библиогр.:12.
https://doi.org/10.36233/0372-9311-316

28.08 - Экология

100. Chew, C. Water Makes Its Mark on GPS Signals / C.Chew // Physics Today. – 2022. – Vol.75, No.2. – P.42-47. - Bibliogr.:9.
https://doi.org/10.1063/PT.3.4941
101. Анофелес, С. Работа с альбедо / С.Анофелес // Химия и жизнь. – 2023. – №3. – С.8-12.
https://www.hij.ru/read/issues/2023/march/31023/
102. Комаров, С.М. Всепланетный охладитель / С.М.Комаров // Химия и жизнь. – 2023. – №3. – С.2-7.
https://www.hij.ru/read/issues/2023/march/31022/

СПИСОК ПРОСМОТРЕННЫХ ЖУРНАЛОВ


1. Health Physics. – 2022. – Vol.122, No.4. – P.469-562.
2. Health Physics. – 2022. – Vol.122, No.5. – P.563-650.
3. IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.2. – P.113-192.
4. IEEE Transactions on Nuclear Science. – 2022. – Vol.69, No.3, Pt.1. – P.193-544.
5. Physics Today. – 2022. – Vol.75, No.2.
6. Radiation Research. – 2021. – Vol.196, No.3. – P.235-330.
7. Radiation Research. – 2021. – Vol.196, No.5. – P.455-560.
8. Science News. – 2022. – Vol.201, No.3.
9. Science. – 2022. – Vol.375, No.6579. – P.353-468.
10. Science. – 2022. – Vol.375, No.6581. – P.585-692.
11. Журнал микробиологии, эпидемиологии и иммунобиологии. – 2023. – Т.100, №1. – С.1-134.
12. Математический сборник. – 2023. – Т.214, №2.
13. Теоретическая и математическая физика. – 2023. – Т.214, №2. – С.177-344.
14. Химия и жизнь. – 2023. – №3.