Информационный бюллетень «Статьи» № 33 17.08.2020

С 133.2 - Уравнения математической физики

С 1 - Математика

1. 90-летию Сергея Константиновича Годунова посвящается // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.549-552.
http://dx.doi.org/10.1134/S0965542520040193
2. Аджиев, С.З. C.K. Годунов и кинетическая теория в ИПМ им. М.В. Келдыша РАН / С.З.Аджиев, [и др.] // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.621-625. - Библиогр.:21.
http://dx.doi.org/10.1134/S0965542520040028

С 131 - Высшая алгебра. Линейная алгебра. Теория матриц

3. Patel, B.K. On the Properties of (p, q)-Fibonacci and (p, q)-Lucas Quaternions / B.K.Patel, P.K.Ray // Mathematical Reports. – 2019. – Vol.21, No.1. – p.15-25. - Bibliogr.:8.
http://imar.ro/journals/Mathematical_Reports/Pdfs/2019/1/2.pdf

С 133.2 - Уравнения математической физики

4. Nigar, N. General Solutions for the Axial Couette Flow of Rate Type Fluids in Cylindrical Domains / N.Nigar, [et al.] // Mathematical Reports. – 2019. – Vol.21, No.1. – p.1-14. - Bibliogr.:23.
http://imar.ro/journals/Mathematical_Reports/Pdfs/2019/1/1.pdf
5. Захаров, В.Е. Интегрирование уравнений глубокой жидкости со свободной поверхностью / В.Е.Захаров // Теоретическая и математическая физика. – 2020. – Т.202, №3. – с.327-338. - Библиогр.:15.
http://mi.mathnet.ru/tmf9811
6. Зубарев, Н.М. Интегрируемая модель взаимодействия встречных слабонелинейных волн на границе жидкости в горизонтальном электрическом поле / Н.М.Зубарев, Е.А.Кочурин // Теоретическая и математическая физика. – 2020. – Т.202, №3. – с.403-414. - Библиогр.:35.
http://mi.mathnet.ru/tmf9784

С 17 - Вычислительная математика. Таблицы

7. Белых, В.Н. Сверхсходящиеся алгоритмы численного решения уравнения Лапласа в гладких осесимметричных областях / В.Н.Белых // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.553-566. - Библиогр.:27.
http://dx.doi.org/10.1134/S096554252004003X
8. Годунов, С.К. Исследование энтропийных свойств линеаризованной редакции метода Годунова / С.К.Годунов, [и др.] // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.639-651. - Библиогр.:8.
http://dx.doi.org/10.1134/S0965542520040089
9. Годунов, С.К. Численный метод квазиизометрической параметризации для двумерных криволинейных областей / С.К.Годунов, [и др.] // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.578-589. - Библиогр.:6.
https://doi.org/10.1134/S096554252004020X
10. Костин, В.И. Оптимизация конечно-разностной схемы для численного решения уравнения Гельмгольца / В.И.Костин, С.А.Соловьев // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.652-662. - Библиогр.:13.
http://dx.doi.org/10.1134/S0965542520040119
11. Меньшов, И.С. Обобщенная и вариационная постановки задачи Римана с приложением к развитию метода Годунова / И.С.Меньшов // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.663-675. - Библиогр.:21.
http://dx.doi.org/10.1134/S0965542520040132
12. Петропавловский, С.В. Метод разностных потенциалов для эволюционных уравнений с лакунами / С.В.Петропавловский, С.В.Цынков // Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – с.725-737. - Библиогр.:7.
http://dx.doi.org/10.1134/S0965542520040144

С 17 и - Математическая кибернетика

13. Dzimbova, T. Computer Modelling of All Types of Somatostatin Receptors / T.Dzimbova, [et al.] // Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – p.272-276. - Bibliogr.:7.
https://dl.uctm.edu/journal/node/j2020-2/4_19-53_p_272-276.pdf

С 3 - Физика

14. Broglia, R.A. Pier Francesco Bortignon as a Scientist / R.A.Broglia // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.222.
http://dx.doi.org/10.1140/epja/i2019-12742-2
15. Browne, K.M. Galilei Proposed the Principle of Relativity, But Not the "Galilean Transformation" / K.M.Browne // American Journal of Physics. – 2020. – Vol.88, No.3. – p.207-213. - Bibliogr.:48.
https://doi.org/10.1119/10.0000303

С 321 - Классическая механика

16. Карабут, Е.А. Построение точных решений задачи о движении жидкости со свободной границей с использованием бесконечных систем дифференциальных уравнений / Е.А.Карабут, Е.Н.Журавлева // Теоретическая и математическая физика. – 2020. – Т.202, №3. – с.425-436. - Библиогр.:10.
http://mi.mathnet.ru/tmf9791
17. Питербарг, Л.И. Гамильтоново описание вихревых систем / Л.И.Питербарг // Теоретическая и математическая физика. – 2020. – Т.202, №3. – с.474-490. - Библиогр.:17.
http://mi.mathnet.ru/tmf9785

С 322 - Теория относительности

18. Alexandrov, S. Black Holes and Higher Depth Mock Modular Forms / S.Alexandrov, B.Pioline // Communications in Mathematical Physics. – 2020. – Vol.374, No.2. – p.549-625. - Bibliogr.:78.
http://dx.doi.org/10.1007/s00220-019-03609-y
19. Arcodia, M.R.A. Fermionic Origin of Dark Energy in the Inflationary Universe from Unified Spinor Fields / M.R.A.Arcodia, M.Bellini // Physica Scripta. – 2020. – Vol.95, No.3. – p.035303. - Bibliogr.:29.
http://dx.doi.org/10.1088/1402-4896/ab569f

С 323 - Квантовая механика

20. Banerjee, S. Quantifying Parallelism of Vectors is the Quantification of Distributed n-Party Entanglement / S.Banerjee, P.K.Panigrahi // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.095301. - Bibliogr.:44.
http://dx.doi.org/10.1088/1751-8121/ab6a70
21. Hayden, P. Approximate Quantum Error Correction Revisited: Introducing the Alpha-Bit / P.Hayden, G.Penington // Communications in Mathematical Physics. – 2020. – Vol.374, No.2. – p.369-432. - Bibliogr.:61.
http://dx.doi.org/10.1007/s00220-020-03689-1
22. Kukita, S. An Upper Bound on the Number of Compatible Parameters in Simultaneous Quantum Estimation / S.Kukita // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.095303. - Bibliogr.:43.
http://dx.doi.org/10.1088/1751-8121/ab6d3d
23. Tzitrin, I. Operational Symmetries of Entangled States / I.Tzitrin, [et al.] // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.095304. - Bibliogr.:56.
http://dx.doi.org/10.1088/1751-8121/ab6fc9

С 324 - Квантовая теория поля

24. Gwynne, E. The Tutte Embedding of the Poisson–Voronoi Tessellation of the Brownian Disk Converges to 8/3-Liouville Quantum Gravity / E.Gwynne, [et al.] // Communications in Mathematical Physics. – 2020. – Vol.374, No.2. – p.735-784. - Bibliogr.:p.782-784.
http://dx.doi.org/10.1007/s00220-019-03610-5

С 324.1г1 - Калибровочные поля на решетке

25. Brower, R.C. Lattice Gauge Theory for Physics Beyond the Standard Model / R.C.Brower, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.198. - Bibliogr.:127.
http://dx.doi.org/10.1140/epja/i2019-12901-5
26. Joo, B. Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond / B.Joo, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.199. - Bibliogr.:143.
http://dx.doi.org/10.1140/epja/i2019-12919-7

С 324.1д - Квантовая хромодинамика

27. Bazavov, A. Hot-Dense Lattice QCD / A.Bazavov, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.194. - Bibliogr.:108.
http://dx.doi.org/10.1140/epja/i2019-12922-0
28. Cai, Y. Narrow Exotic Hadrons in the Heavy Quark Limit of QCD / Y.Cai, T.Cohen // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.206. - Bibliogr.:27.
http://dx.doi.org/10.1140/epja/i2019-12906-0
29. Cirigliano, V. The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics / V.Cirigliano, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.197. - Bibliogr.:233.
http://dx.doi.org/10.1140/epja/i2019-12889-8
30. Kronfeld, A.S. Lattice QCD and Neutrino-Nucleus Scattering / A.S.Kronfeld, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.196. - Bibliogr.:241.
http://dx.doi.org/10.1140/epja/i2019-12916-x
31. Lehner, C. Opportunities for Lattice QCD in Quark and Lepton Flavor Physics / C.Lehner, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.135. - Bibliogr.:228.
http://dx.doi.org/10.1140/epja/i2019-12891-2
32. Rath, S. Thermomagnetic Properties and Bjorken Expansion of Hot QCD Matter in a Strong Magnetic Field / S.Rath, B.K.Patra // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.220. - Bibliogr.:94.
http://dx.doi.org/10.1140/epja/i2019-12907-y

С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны

33. Sen, K. Polology of Superconformal Blocks / K.Sen, M.Yamazaki // Communications in Mathematical Physics. – 2020. – Vol.374, No.2. – p.785-821. - Bibliogr.:54.
http://dx.doi.org/10.1007/s00220-019-03572-8

С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки

34. Keller, C.A. Conformal Perturbation Theory for Twisted Fields / C.A.Keller, I.G.Zadeh // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.095401. - Bibliogr.:39.
http://dx.doi.org/10.1088/1751-8121/ab6b91

С 325 - Статистическая физика и термодинамика

35. Basu, U. Exact Stationary State of a Run-and-Tumble Particle with Three Internal States in a Harmonic Trap / U.Basu, [et al.] // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.09LT01. - Bibliogr.:58.
http://dx.doi.org/10.1088/1751-8121/ab6af0
36. Алафердов, А.В. Использование пленок из многослойного графена в качестве покрытий светоизлучающих GaAs-структур / А.В.Алафердов, [и др.] // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.399-406. - Библиогр.:19.
https://journals.ioffe.ru/articles/viewPDF/49067

С 325.1 - Точно решаемые и решеточные модели

37. Tan, Z.-Z. Electrical Properties of an m x n Rectangular Network / Z.-Z.Tan, Z.Tan // Physica Scripta. – 2020. – Vol.95, No.3. – p.035226. - Bibliogr.:36.
http://dx.doi.org/10.1088/1402-4896/ab5977
38. Zhou, Y. Non-Fragile L 2 -L Synchronization for Chaotic Time-Delay Neural Networks with Semi-Markovian Jump Parameters / Y.Zhou, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035215. - Bibliogr.:49.
http://dx.doi.org/10.1088/1402-4896/ab4924

С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы

39. Abrar, M.N. Entropy Generation During Peristaltically Flowing Nanofluid in an Axisymmetric Channel with Flexible Walls / M.N.Abrar, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035206. - Bibliogr.:46.
http://dx.doi.org/10.1088/1402-4896/ab4aab
40. Ardehaei, M.F. Finite Time Synchronization of Fractional Chaotic Systems with Several Slaves in an Optimal Manner / M.F.Ardehaei, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035219. - Bibliogr.:50.
http://dx.doi.org/10.1088/1402-4896/ab474d
41. He, S. Fractional Symbolic Network Entropy Analysis for the Fractional-Order Chaotic Systems / S.He, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035220. - Bibliogr.:53.
http://dx.doi.org/10.1088/1402-4896/ab46c9
42. Ramshaw, J.D. Redefinition of the Boltzmann–Gibbs–Shannon Entropy in Systems with Continuous States / J.D.Ramshaw // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.095003. - Bibliogr.:47.
http://dx.doi.org/10.1088/1751-8121/ab6d3e

С 326 - Квантовая теория систем из многих частиц. Квантовая статистика

43. Hai, W. Alternative Interpretation and Prediction of Quantum Hall Effect Via Electron Pairing Picture / W.Hai, [et al.] // Few-Body Systems. – 2020. – Vol.61, No.1. – p.8. - Bibliogr.:68.
http://dx.doi.org/10.1007/s00601-020-1541-9

С 33 а - Нанофизика. Нанотехнология

44. Abeywickrama, C. Impact of a Charged Neighboring Particle on Forster Resonance Energy Transfer (FRET) / C.Abeywickrama, [et al.] // Journal of Physics: Condensed Matter. – 2020. – Vol.32, No.9. – p.095305. - Bibliogr.:79.
http://dx.doi.org/10.1088/1361-648X/ab577a
45. Anwar, M.S. Numerical Study of Transport Phenomena in a Nanofluid Using Fractional Relaxation Times in Buongiorno Model / M.S.Anwar // Physica Scripta. – 2020. – Vol.95, No.3. – p.035211. - Bibliogr.:28.
http://dx.doi.org/10.1088/1402-4896/ab4ba9
46. Gul, M. Entropy Generation for Peristaltic Motion of Carreau's Fluid with Mixture of Ethylene Glycol and Boron-Nitride Nanoparticles / M.Gul, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035212. - Bibliogr.:34.
http://dx.doi.org/10.1088/1402-4896/ab49f8
47. Hashim. Mixed Convection Flow and Heat Transfer Mechanism for Non-Newtonian Carreau Nanofluids Under the Effect of Infinite Shear Rate Viscosity / Hashim, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035225. - Bibliogr.:31.
http://dx.doi.org/10.1088/1402-4896/ab41e9
48. Ivanova, I.A. Antimicrobial and Cytotoxic Properties of Metal Nanoparticles and Graphene Materials : (Review) / I.A.Ivanova, [et al.] // Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – p.219-250. - Bibliogr.:77.
https://dl.uctm.edu/journal/node/j2020-2/1_19-150_p_239-250.pdf
49. Kalassov, N. Application of Integrated Membrane Bioreactors in Renewable Energy Industry / N.Kalassov, [et al.] // Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – p.314-323. - Bibliogr.:33.
https://dl.uctm.edu/journal/node/j2020-2/10_19-324_p_314-323.pdf
50. Kiani, K. On the Nonlocality of Bilateral Vibrations of Single-Layered Membranes from Vertically Aligned Double-Walled Carbon Nanotubes / K.Kiani, H.Pakdaman // Physica Scripta. – 2020. – Vol.95, No.3. – p.035221. - Bibliogr.:65.
http://dx.doi.org/10.1088/1402-4896/ab43b6
51. Suneeta, P. Synthesis and Optical Properties of Mn-Doped CaWO 4 Nanoparticles / P.Suneeta, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035805. - Bibliogr.:39.
http://dx.doi.org/10.1088/1402-4896/ab4d2a
52. Wang, D. Unique Landau-Level Structure of Monolayer Black Phosphorus Under an Exponentially Decaying Magnetic Field / D.Wang, [et al.] // Journal of Physics: Condensed Matter. – 2020. – Vol.32, No.9. – p.095301. - Bibliogr.:34.
http://dx.doi.org/10.1088/1361-648X/ab561a
53. Zaib, A. Numerical Analysis of Effective Prandtl Model on Mixed convection Flow of Al 2 O 3 –H 2 O Nanoliquids with Micropolar Liquid Driven Through Wedge / A.Zaib, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035005. - Bibliogr.:37.
http://dx.doi.org/10.1088/1402-4896/ab5558

С 332 - Электромагнитные взаимодействия

54. Адуев, Б.П. Зажигание каменных углей различных стадий метаморфизма лазерными импульсами в режиме свободной генерации / Б.П.Адуев, [и др.] // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.442-448. - Библиогр.:16.
https://journals.ioffe.ru/articles/viewPDF/49073
55. Дьячков, А.Б. Исследование кинетических параметров схемы лазерной фотоионизации лютеция / А.Б.Дьячков, [и др.] // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.301-308. - Библиогр.:12.
https://journals.ioffe.ru/articles/viewPDF/49055

С 341 - Атомные ядра

56. Cavallaro, M. Giant Pairing Vibrations in Light Nuclei / M.Cavallaro, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.244. - Bibliogr.:50.
http://dx.doi.org/10.1140/epja/i2019-12786-2
57. Van Willigen, J. Uranium Fission and Plutonium Production in the Undergraduate Lab / J.Van Willigen, [et al.] // American Journal of Physics. – 2020. – Vol.88, No.3. – p.200-206. - Bibliogr.:14.
https://doi.org/10.1119/10.0000206

С 341 а - Различные модели ядер

58. Abolghasem, M. Macroscopic and Skyrme–Hartree–Fock Test of E(5) Symmetry in Xenon Isotopes / M.Abolghasem, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.034010. - Bibliogr.:28.
http://dx.doi.org/10.1088/1402-4896/ab51ec
59. Alamanos, N. Topical Issue on Giant, Pygmy, Pairing Resonances and Related Topics / N.Alamanos, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.221.
http://dx.doi.org/10.1140/epja/i2019-12966-0
60. Assie, M. The Giant Pairing Vibration in Heavy Nuclei. Present Status and Future Studies / M.Assie, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.245. - Bibliogr.:63.
http://dx.doi.org/10.1140/epja/i2019-12786-2
61. Aumann, T. Low-Energy Dipole Response of Exotic Nuclei / T.Aumann // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.234. - Bibliogr.:58.
http://dx.doi.org/10.1140/epja/i2019-12862-7
62. Bertsch, G.F. Monopole Moments and the -Vibration in Deformed Nuclei / G.F.Bertsch // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.248. - Bibliogr.:18.
http://dx.doi.org/10.1140/epja/i2019-12764-8
63. Bertulani, C.A. Pygmy Resonances and Symmetry Energy / C.A.Bertulani // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.240. - Bibliogr.:183.
http://dx.doi.org/10.1140/epja/i2019-12883-2
64. Bespalova, O.V. Single-Particle Structure of the N = 20, 28 Isotones Within the Dispersive Optical Model / O.V.Bespalova, A.A.Klimochkina // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.212. - Bibliogr.:52.
http://dx.doi.org/10.1140/epja/i2019-12894-y
65. Bortignon, P.F. The Effective Single Particle Potential and the Tadpole / P.F.Bortignon, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.246. - Bibliogr.:44.
http://dx.doi.org/10.1140/epja/i2019-12792-4
66. Bracco, A. Gamma-Decay from Dipole Vibrations: Probe for Nuclear Properties / A.Bracco, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.233. - Bibliogr.:91.
http://dx.doi.org/10.1140/epja/i2019-12887-x
67. Broglia, R.A. Characterization of Vorticity in Pygmy Resonances and Soft-Dipole Modes with Two-Nucleon Transfer Reactions / R.A.Broglia, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.243. - Bibliogr.:53.
http://dx.doi.org/10.1140/epja/i2019-12789-y
68. Dossing, T. Collective Enhancements in Nuclear Level Densities / T.Dossing, S.Aberg // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.249. - Bibliogr.:35.
http://dx.doi.org/10.1140/epja/i2019-12890-3
69. Howard, K.B. Where We Stand on Structure Dependence of ISGMR in the Zr-Mo Region: Implications on K / K.B.Howard, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.228. - Bibliogr.:33.
http://dx.doi.org/10.1140/epja/i2019-12762-x
70. Kobayashi, N. Excitation and -Decay Coincidence Measurements at the GRAF Beamline for Studies of Pygmy and Giant Dipole Resonances / N.Kobayashi, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.231. - Bibliogr.:27.
http://dx.doi.org/10.1140/epja/i2019-12854-7
71. Kruse, M.K.G. No-Core Shell Model Calculations of the Photonuclear Cross Section of 10B / M.K.G.Kruse, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.225. - Bibliogr.:53.
http://dx.doi.org/10.1140/epja/i2019-12905-1
72. Kvasil, J. Elimination of Spurious Modes before the Solution of Quasiparticle Random-Phase-Approximation Equations / J.Kvasil, A.Repko, V.O.Nesterenko // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.213. - Bibliogr.:35.
https://doi.org/10.1140/epja/i2019-12898-7
73. Lalazissis, G.A. Giant Resonances with Time Dependent Covariant Density Functional Theory / G.A.Lalazissis, P.Ring // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.229. - Bibliogr.:69.
http://dx.doi.org/10.1140/epja/i2019-12869-0
74. Lanza, E.G. Low-Lying Dipole and Quadrupole States : Are They New Excitation Modes? / E.G.Lanza, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.235. - Bibliogr.:61.
http://dx.doi.org/10.1140/epja/i2019-12797-y
75. Lenske, H. Dissolution of Shell Structures and the Polarizability of Dripline Nuclei / H.Lenske, N.Tsoneva // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.238. - Bibliogr.:84.
http://dx.doi.org/10.1140/epja/i2019-12811-6
76. Leoni, S. Particle-Phonon Coupling: Understanding the Variety of Excitations in the Low-Lying Spectra of Odd Nuclei / S.Leoni, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.247. - Bibliogr.:75.
http://dx.doi.org/10.1140/epja/i2019-12925-9
77. Litvinova, E. Nuclear Response in a Finite-Temperature Relativistic Framework / E.Litvinova, H.Wibowo // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.223. - Bibliogr.:93.
http://dx.doi.org/10.1140/epja/i2019-12771-9
78. Peru, S. Study of Dipole Excitations in Even-Even 156-166 Dy with QRPA Using the Gogny Force / S.Peru, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.232. - Bibliogr.:45.
http://dx.doi.org/10.1140/epja/i2019-12896-9
79. Pietralla, N. Photonuclear Reactions: Achievements and Perspectives / N.Pietralla, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.237. - Bibliogr.:74.
http://dx.doi.org/10.1140/epja/i2019-12857-4
80. Plujko, V. Description of Nuclear Photoexcitation by Lorentzian Expressions for Electric Dipole Photon Strength Function / V.Plujko, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.210. - Bibliogr.:55.
http://dx.doi.org/10.1140/epja/i2019-12899-6
81. Ponomarev, V.Yu. Excitation of the Electric Pygmy Dipole Resonance by Inelastic Electron Scattering / V.Yu.Ponomarev, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.236. - Bibliogr.:40.
http://dx.doi.org/10.1140/epja/i2019-12784-4
82. Repko, A. Systematics of Toroidal Dipole modes in Ca, Ni, Zr, and Sn Isotopes / A.Repko, V.O.Nesterenko, J.Kvasil, P.-G.Reinhard // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.242. - Bibliogr.:69.
https://doi.org/10.1140/epja/i2019-12770-x
83. Sagawa, H. Collective Excitations Involving Spin and Isospin Degrees of Freedom / H.Sagawa, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.227. - Bibliogr.:73.
http://dx.doi.org/10.1140/epja/i2019-12923-y
84. Schuck, P. Mean-Field Theory for Fermion Pairs and the ab Initio Particle-Vibration Coupling Approach / P.Schuck // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.250. - Bibliogr.:37.
http://dx.doi.org/10.1140/epja/i2019-12798-x
85. Simonis, J. First Principles Electromagnetic Responses in Medium-Mass Nuclei : Recent Progress from Coupled-Cluster Theory / J.Simonis, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.241. - Bibliogr.:68.
http://dx.doi.org/10.1140/epja/i2019-12825-0
86. Tanihata, I. Soft Giant Resonance in Two Neutron Halo Nucleus 11Li / I.Tanihata, K.Ogata // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.239. - Bibliogr.:42.
http://dx.doi.org/10.1140/epja/i2019-12852-9
87. Von Neumann-Cosel, P. Gross, Intermediate and Fine Structure of Nuclear Giant Resonances: Evidence for Doorway States / P.Von Neumann-Cosel, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.224. - Bibliogr.:76.
http://dx.doi.org/10.1140/epja/i2019-12795-1
88. Yuksel, E. Nuclear Excitations Within Microscopic EDF Approaches: Pairing and Temperature Effects on the Dipole Response / E.Yuksel, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.230. - Bibliogr.:57.
http://dx.doi.org/10.1140/epja/i2019-12918-8

С 341 е - Ядерная астрофизика

89. Langanke, K. The Role of Giant Resonances in Nuclear Astrophysics: An Overview / K.Langanke, G.Martinez-Pinedo // The European Physical Journal A. – 2019. – Vol.55, No.12. – p.226. - Bibliogr.:134.
http://dx.doi.org/10.1140/epja/i2019-12760-0
90. Lim, Y. Bayesian Modeling of the Nuclear Equation of State for Neutron Star Tidal Deformabilities and GW170817 / Y.Lim, J.W.Holt // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.209. - Bibliogr.:126.
http://dx.doi.org/10.1140/epja/i2019-12917-9
91. Rode, S.P. Anisotropic Flow of Charged and Identified Hadrons at FAIR Energies and Its Dependence on the Nuclear Equation of State / S.P.Rode, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.216. - Bibliogr.:67.
http://dx.doi.org/10.1140/epja/i2019-12921-1

С 341.1 - Радиоактивность

92. Chen, J.-L. New Geiger-Nuttall Law for Proton Radioactivity / J.-L.Chen, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.214. - Bibliogr.:40.
http://dx.doi.org/10.1140/epja/i2019-12927-7

С 343 - Ядерные реакции

93. Guardo, G.L. The 10B(n, )7Li Cross Sections at Ultra-Low Energy Through the Trojan Horse Method Applied to the 2H(10B, 7Li)1H / G.L.Guardo, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.211. - Bibliogr.:62.
http://dx.doi.org/10.1140/epja/i2019-12914-0
94. Hessberger, F.P. On the Synthesis of 258Rf Via p-Deexcitation in the Complete Fusion Reaction 50Ti + 209Bi / F.P.Hessberger // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.208. - Bibliogr.:20.
http://dx.doi.org/10.1140/epja/i2019-12912-2
95. Naik, H. Photo-Neutron Reaction Cross-Sections of 59Co in the Bremsstrahlung End-Point Energies of 65 and 75 MeV / H.Naik, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.217. - Bibliogr.:29.
http://dx.doi.org/10.1140/epja/i2019-12915-y

С 343 г - Взаимодействие нейтронов с ядрами

96. Bai, H. Cross Sections of the 10B(n, )7Li Two-Body and 10B(n, t2) Three-Body Reactions at 4.0, 4.5, and 5.0 MeV / H.Bai, Yu.M.Gledenov, M.V.Sedysheva, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.219. - Bibliogr.:19.
https://doi.org/10.1140/epja/i2019-12908-x

С 343 е - Ядерные реакции с тяжелыми ионами

97. Zhu, L. Centrality and Transverse Momentum Dependencies of Hadrons in Pb+Pb Collisions at s NN = 5.02 TeV and Xe + Xe Collisions at s NN = 5.44 TeV from a Multi-Phase Transport Model / L.Zhu, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.205. - Bibliogr.:40.
http://dx.doi.org/10.1140/epja/i2019-12903-3

С 344.1 - Методы и аппаратура для регистрации элементарных частиц и фотонов

98. Brown, S.T. Time-Encoded Gamma-Ray Imaging Using a 3-D Position-Sensitive CdZnTe Detector Array / S.T.Brown, [et al.] // IEEE Transactions on Nuclear Science. – 2020. – Vol.67, No.2. – p.464-472. - Bibliogr.:35.
https://doi.org/10.1109/TNS.2019.2953182
99. Habib, A. Shunt Regulator for the Serial Powering of the ATLAS CMOS Pixel Detector Modules / A.Habib, [et al.] // IEEE Transactions on Nuclear Science. – 2020. – Vol.67, No.2. – p.455-463. - Bibliogr.:13.
https://doi.org/10.1109/TNS.2020.2964333
100. Manfredi, J.J. Proton Light Yield of Fast Plastic Scintillators for Neutron Imaging / J.J.Manfredi, [et al.] // IEEE Transactions on Nuclear Science. – 2020. – Vol.67, No.2. – p.434-442. - Bibliogr.:31.
https://doi.org/10.1109/TNS.2019.2959979
101. Pan, L. Performance of Perovskite CsPbBr 3 Single Crystal Detector for Gamma-Ray Detection / L.Pan, [et al.] // IEEE Transactions on Nuclear Science. – 2020. – Vol.67, No.2. – p.443-449. - Bibliogr.:38.
https://doi.org/10.1109/TNS.2020.2964306
102. Wei, Q. Reducing NaI(Tl) Detector Spectrum Shift by Optimizing Pulse Integration Time / Q.Wei, [et al.] // IEEE Transactions on Nuclear Science. – 2020. – Vol.67, No.2. – p.450-454. - Bibliogr.:17.
https://doi.org/10.1109/TNS.2020.2964497

С 346.1 - Нейтрино

103. Ettefaghi, M.M. Quantum Wave Packet Approach to Oscillation of Z0 Decay Neutrinos / M.M.Ettefaghi, Z.A.Ravari // Physica Scripta. – 2020. – Vol.95, No.3. – p.035301. - Bibliogr.:15.
http://dx.doi.org/10.1088/1402-4896/ab553f

С 346.5 - К-мезоны и гипероны

104. Akondi, C.S. Experimental Study of the p K0+, n K0, and n K00 Reactions at the Mainz Microtron / C.S.Akondi, N.Borisov, I.Gorodnov, V.L.Kashevarov, A.Lazarev, A.Neganov, Yu.A.Usov, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.202. - Bibliogr.:37.
https://doi.org/10.1140/epja/i2019-12924-x

С 349 - Дозиметрия и физика защиты

105. Abdullahi, S. Assessment of Naturally Occurring Radionuclides in Malaysia's Building Materials / S.Abdullahi, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.520-523. - Bibliogr.:24.
https://doi.org/10.1093/rpd/ncz125
106. Alukic, E. Lumbar Spine Radiography: Lower Organ Dose with the Use of PA Projection / E.Alukic, N.Mekis // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.507-512. - Bibliogr.:31.
https://doi.org/10.1093/rpd/ncz057
107. Bolduc, D.L. Baboon Radiation Quality (Mixed-Field Neutron and Gamma, Gamma Alone) Dose-Response Model Systems: Assessment of H-ARS Severity Using Haematologic Biomarkers / D.L.Bolduc, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.15-23. - Bibliogr.:42.
https://doi.org/10.1093/rpd/ncz048
108. Bortolin, E. Detection of Ionizing Radiation Treatment in Glass Used for Healthcare Products / E.Bortolin, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.78-82. - Bibliogr.:20.
https://doi.org/10.1093/rpd/ncz014
109. Dainiak, N. Concepts of Operations for a US Dosimetry and Biodosimetry Network / N.Dainiak, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.130-138. - Bibliogr.:38.
https://doi.org/10.1093/rpd/ncy294
110. Drozdovitch, V. Estimation of Radiation Doses for a Case-Control Study of Thyroid Cancer Among Ukrainian Chernobyl Cleanup Workers / V.Drozdovitch, [et al.] // Health Physics. – 2020. – Vol.118, No.1. – p.18-35. - Bibliogr.:p.34-35.
http://dx.doi.org/10.1097/HP.0000000000001120
111. Fu, J. Macrophage-Mediated Bystander Effects after Different Irradiations Through a p53-Dependent Pathway / J.Fu, [et al.] // Radiation Research. – 2020. – Vol.193, No.2. – p.119-129. - Bibliogr.:52.
https://doi.org/10.1667/RR15354.1
112. Furukawa, A. The Project of Another Low-Cost Metaphase Finder (Second Report-Application of Artificial Intelligence) / A.Furukawa // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.37-41. - Bibliogr.:11.
https://doi.org/10.1093/rpd/ncz012
113. Garrett, J.E. Enhancement of Cytotoxicity of Enediyne Compounds by Hyperthermia: Effects of Various Metal Complexes on Tumor Cells / J.E.Garrett, [et al.] // Radiation Research. – 2020. – Vol.193, No.2. – p.107-118. - Bibliogr.:22.
https://doi.org/10.1667/RR15433.1
114. Georgiev, E. Comparison of Radiation Dose and Image Quality in CTA of the Peripheral Arteries / E.Georgiev, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.437-442. - Bibliogr.:7.
https://doi.org/10.1093/rpd/ncz045
115. Giussani, A. The EURADOS Work Towards a Review on Retrospective Dosimetry After Incorporation of Radionuclides / A.Giussani, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.12-14. - Bibliogr.:11.
https://doi.org/10.1093/rpd/ncy244
116. Hayes, J.M. Effective Half-Life of 134Cs and 137Cs in Fukushima Prefecture When Compared to Theoretical Decay Models / J.M.Hayes, [et al.] // Health Physics. – 2020. – Vol.118, No.1. – p.60-64. - Bibliogr.:p.64.
http://dx.doi.org/10.1097/HP.0000000000001129
117. Horowitz, Y.S. The Recent Success of Microdosimetry / Y.S.Horowitz // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.536-537. - Bibliogr.:21.
https://doi.org/10.1093/rpd/ncz167
118. Jang, S. Capabilities of the ARADOS-WG03 Regional Network for Large-Scale Radiological and Nuclear Emergency Situations in Asia / S.Jang, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.139-142. - Bibliogr.:11.
https://doi.org/10.1093/rpd/ncy279
119. Kim, E. Reassessment of Internal Thyroid Doses to 1,080 Children Examined in a Screening Survey after the 2011 Fukushima Nuclear Disaster / E.Kim, [et al.] // Health Physics. – 2020. – Vol.118, No.1. – p.36-52. - Bibliogr.:p.51-52.
http://dx.doi.org/10.1097/HP.0000000000001125
120. McKeever, S.W.S. A Comparative Study of EPR and TL Signals in Gorilla R Glass / S.W.S.McKeever, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.65-69. - Bibliogr.:15.
https://doi.org/10.1093/rpd/ncz019
121. Mohammadbeigi, A. Local DRLs for Paediatric CT Examinations Based on Size-Specific Dose Estimates in Kermanshah. Iran / A.Mohammadbeigi, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.496-506. - Bibliogr.:37.
https://doi.org/10.1093/rpd/ncz056
122. Rabus, H. Proposal for a European Metrology Network on Biological Ionising Radiation Effects / H.Rabus, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.143-147. - Bibliogr.:27.
https://doi.org/10.1093/rpd/ncz011
123. Rood, A.S. Use of Routine Environmental Monitoring Data to Establish a Dose-Based Compliance System for a Low-Level Radioactive Waste Disposal Site / A.S.Rood, [et al.] // Health Physics. – 2020. – Vol.118, No.1. – p.1-17. - Bibliogr.:p.17.
http://dx.doi.org/10.1097/HP.0000000000001116
124. Shishkina, E.A. Application of EPR Tooth Dosimetry for Validation of the Calculated External Doses: Experience in Dosimetry for the Techa River Cohort / E.A.Shishkina, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.70-77. - Bibliogr.:35.
https://doi.org/10.1093/rpd/ncy258
125. Sholom, S. A Comparison of Different Spectra Deconvolution Methods Used in EPR Dosimetry with Gorolla R Glasses / S.Sholom, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.54-59. - Bibliogr.:18.
https://doi.org/10.1093/rpd/ncy260
126. Sholom, S. An Advance in EPR Dosimetry with Nails / S.Sholom, S.W.S.McKeever // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.60-64. - Bibliogr.:15.
https://doi.org/10.1093/rpd/ncz019
127. Smith, E.J. Imaging and Dosimetry Study of Inter-Fraction Setup Error in a Murine Xenograft Flank Tumor Radiation Model / E.J.Smith, [et al.] // Radiation Research. – 2020. – Vol.193, No.2. – p.161-170. - Bibliogr.:11.
https://doi.org/10.1667/RR15526.1
128. Toyoda, S. Retrospective ESR Reconstruction of Cattle Tooth Enamel Doses from the Radioactive Nuclei Released by the Accident of Fukushima Fai-ichi Atomic Power Plants / S.Toyoda, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.48-53. - Bibliogr.:13.
https://doi.org/10.1093/rpd/ncz037
129. Villafane, R.M. Estimation of the Anisotropy Emission of LPN/CIEMAT Neutron Sources: Effect of Heavy Capsule Holders / R.M.Villafane, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.452-461. - Bibliogr.:17.
https://doi.org/10.1093/rpd/ncz050
130. Vinnikov, V. Clinical Applications of Biomarkers of Radiation Exposure: Limitations and Possible Solutions Through Coordinated Research / V.Vinnikov, O.Belyakov // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.3-8. - Bibliogr.:32.
https://doi.org/10.1093/rpd/ncz038

С 349 а - Дозиметрия различных видов излучения. Абсолютные измерения потоков

131. Abend, M. Contribution of Biodosimetry to Different Medical Issues / M.Abend, M.Port // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.123-125. - Bibliogr.:13.


132. Adolfsson, E. End-to-End Audit: Comparison of TLD and Lithium Formate EPR Dosimetry / E.Adolfsson, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.119-122. - Bibliogr.:19.
https://doi.org/10.1093/rpd/ncy289
133. Bairlein, K. Conversion Coefficients from Air Kerma to Directional Dose Equivalent H'(h0.07) for Photons / K.Bairlein // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.513-519. - Bibliogr.:12.
https://doi.org/10.1093/rpd/ncz060
134. Bohari, A. Assessment on the Interchangeability of Personal Effective Dose Algorithms in Fluoroscopy-Guided Interventions Using Bland-Altman Analysis / A.Bohari, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.462-468. - Bibliogr.:15.
https://doi.org/10.1093/rpd/ncz051
135. Costa, T. Characterization of a Lithium Formate EPR-Dosimetry System for Proton Radiation Therapy / T.Costa, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.83-87. - Bibliogr.:14.
https://doi.org/10.1093/rpd/ncy293
136. Doering, C. A New Background Subtraction Method for Assessing Public Radiation Exposure Due to Radon Transport from a Uranium Mine / C.Doering // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.530-535. - Bibliogr.:12.
https://doi.org/10.1093/rpd/ncz141
137. Farhood, B. Different Methods of Measuring Neutron Dose/Fluence Generated During Radiation Therapy with Megavoltage Beams / B.Farhood, [et al.] // Health Physics. – 2020. – Vol.118, No.1. – p.65-74. - Bibliogr.:p.72-74.
http://dx.doi.org/10.1097/HP.0000000000001130
138. Fathy, M. Occupational Radiation Dose to Nuclear Medicine Staff Due Tc99m, F18-FDG PET and Therapeutic I-131 Based Examinations / M.Fathy, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.143-151. - Bibliogr.:20.
https://doi.org/10.1093/rpd/ncz046
139. Kim, S.Y. Intercomparison on Internal Dose Assessment for Nuclear Power Plants in Korea / S.Y.Kim // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.524-529. - Bibliogr.:12.
https://doi.org/10.1093/rpd/ncz122
140. Kortmis, M.V. Dose Reconstruction from ESR Signal of Gamma-Irradiated Soda-Lime Glass for Triage Application / M.V.Kortmis, N.Maltar-Strmecki // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.88-93. - Bibliogr.:25.
https://doi.org/10.1093/rpd/ncy290
141. Moores, B.M. Cost-Risk-Benefit Analysis in Diagnostic Radiology with Special Reference to the Application of Referral Guidelines / B.M.Moores // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.479-487. - Bibliogr.:37.
https://doi.org/10.1093/rpd/ncz054
142. Polozov, S. Rapid Gene Expression Based Dose Estimation for Radiological Emergencies / S.Polozov, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.24-30. - Bibliogr.:23.
https://doi.org/10.1093/rpd/ncz053
143. Port, M. Radiation Dose Is of Limited Clinical Usefulness in Persons with Acute Radiation Syndrome / M.Port, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.126-129. - Bibliogr.:18.
https://doi.org/10.1093/rpd/ncz058
144. Sadel, M. Optically Stimulated Luminescence of LiF:Mg,Cu,P Powder - Influence of Thermal Treatment / M.Sadel, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.488-495. - Bibliogr.:13.
https://doi.org/10.1093/rpd/ncz055
145. Schonfeld, S.J. Comparison of Radiation Dose Reconstruction Methods to Investigate Late Adverse Effects of Radiotherapy for Childhood Cancer: A Report from the Childhood Cancer Survivor Study / S.J.Schonfeld, [et al.] // Radiation Research. – 2020. – Vol.193, No.2. – p.95-106. - Bibliogr.:34.
https://doi.org/10.1667/RR15308.1
146. Testa, A. A Novel Biological Dosimetry Assay as a Potential Tool for Triage Dose Assessment in Case of Large-Scale Radiological Emergency / A.Testa, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.9-11. - Bibliogr.:5.
https://doi.org/10.1093/rpd/ncz001

С 349 д - Биологическое действие излучений

147. Li, Y. Radiation Dose Estimation by Completely Automated Interpretation of the Dicentric Chromosome Assay / Y.Li, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.42-47. - Bibliogr.:13.
https://doi.org/10.1093/rpd/ncy282
148. Nabavizadeh, N. Contrast-Enhanced Ultrasound to Detect Early Microvascular Changes in Skeletal Muscle after High-Dose Radiation Treatment / N.Nabavizadeh, [et al.] // Radiation Research. – 2020. – Vol.193, No.2. – p.155-160. - Bibliogr.:11.
https://doi.org/10.1667/RR15471.1
149. Nugis, V.Yu. Cytogenetic Biodosimetry of Accidental Exposures in the Long Terms After Irradiation / V.Yu.Nugis, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – p.31-36. - Bibliogr.:7.
https://doi.org/10.1093/rpd/ncz040
150. Pirchio, R. Characterisation of TLDs-200 and OSLDs at Low X-Ray Energies and Determination of Eye Lens Dose, Thyroid Dose and Mean Glandular Dose During Standard Mammography and Tomosynthesis / R.Pirchio, [et al.] // Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – p.469-478. - Bibliogr.:35.
https://doi.org/10.1093/rpd/ncz052
151. Saki, M. Effects of Brain Irradiation in Immune-Competent and Immune-Compromised Mouse Models / M.Saki, [et al.] // Radiation Research. – 2020. – Vol.193, No.2. – p.186-194. - Bibliogr.:19.
https://doi.org/10.1667/RR15373.1

С 353 - Физика плазмы

152. Kosarev, N.I. Deformation of the Emission Line Profile of Optically Dense Spherical Plasma Caused by Rotation of Substance / N.I.Kosarev, M.S.El'berg // Physica Scripta. – 2020. – Vol.95, No.3. – p.035603. - Bibliogr.:19.
http://dx.doi.org/10.1088/1402-4896/ab49f9
153. Mebrek, R. Anisotropic Ultracold Plasma Expansion / R.Mebrek, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035601. - Bibliogr.:30.
http://dx.doi.org/10.1088/1402-4896/ab57fb
154. Mogaddam, R.R. Entanglement Fidelity Ratio for Elastic Collisions in Non-Ideal Two-Temperature Dense Plasma / R.R.Mogaddam, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035604. - Bibliogr.:56.
http://dx.doi.org/10.1088/1402-4896/ab526a
155. Patel, A.D. Characterization of Argon Plasma in a Variable Multi-Pole Line Cusp Magnetic Field Configuration / A.D.Patel, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035602. - Bibliogr.:29.
http://dx.doi.org/10.1088/1402-4896/ab4bae
156. Sharma, G. Effect of Two Temperature Electrons in a Collisional Magnetized Plasma Sheath / G.Sharma, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035605. - Bibliogr.:29.
http://dx.doi.org/10.1088/1402-4896/ab5548

С 37 - Оптика

157. Polosan, S. Optical Spectroscopy and Dielectric Properties of Phosphate-Tellurite Glasses / S.Polosan, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.034005. - Bibliogr.:46.
http://dx.doi.org/10.1088/1402-4896/ab5263
158. Sohail, A. Enhanced Entanglement Induced by Coulomb Interaction in Coupled Optomechanical Systems / A.Sohail, [et al.] // Physica Scripta. – 2020. – Vol.95, No.3. – p.035108. - Bibliogr.:63.
http://dx.doi.org/10.1088/1402-4896/ab4dde
159. Sperling, J. Quasiprobability Distributions for Quantum-Optical Coherence and Beyond / J.Sperling, W.Vogel // Physica Scripta. – 2020. – Vol.95, No.3. – p.034007. - Bibliogr.:194.
http://dx.doi.org/10.1088/1402-4896/ab5501
160. Zhang, Y. Detecting Non-Gaussianity Via Nonclassicality / Y.Zhang, S.Luo // Physica Scripta. – 2020. – Vol.95, No.3. – p.035101. - Bibliogr.:60.
http://dx.doi.org/10.1088/1402-4896/ab5b24
161. Головинский, П.А. Рассеяние оптического излучения шероховатой разномасштабной зеркальной поверхностью / П.А.Головинский, Д.К.Проскурин // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.407-415. - Библиогр.:46.
https://journals.ioffe.ru/articles/viewPDF/49068
162. Лойко, В.А. Малоугловое рассеяние и поляризация излучения вытянутой полимерной пленкой с каплями нематического жидкого кристалла, имеющими монодоменную структуру / В.А.Лойко, [и др.] // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.343-350. - Библиогр.:25.
https://journals.ioffe.ru/articles/viewPDF/49062
163. Михайлов, А.В. Вклад тонких поглощающих слоев в спектры отражения / А.В.Михайлов, В.Л.Кузьмин // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.416-421. - Библиогр.:27.
https://journals.ioffe.ru/articles/viewPDF/49069
164. Расмагин, С.И. Анализ оптических свойств наночастиц серебра / С.И.Расмагин, Л.А.Апресян // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.339-342. - Библиогр.:19.
https://journals.ioffe.ru/articles/viewPDF/49061
165. Савотченко, С.Е. Нелинейные поверхностные волны в симметричной трехслойной структуре из оптических сред с различными механизмами формирования нелинейного отклика / С.Е.Савотченко // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.358-367. - Библиогр.:47.
https://journals.ioffe.ru/articles/viewPDF/49064

С 63 - Астрофизика

166. Dubrovich, V. On the Possibility of Observable Signatures of p and (4He)+ Lines on the Spectra of Astrophysical Sources / V.Dubrovich, T.Zalialiutdinov // Physica Scripta. – 2020. – Vol.95, No.3. – p.035006. - Bibliogr.:18.
http://dx.doi.org/10.1088/1402-4896/ab5484
167. Logoteta, D. Impact of Chiral Hyperonic Three-Body Forces on Neutron Stars / D.Logoteta, [et al.] // The European Physical Journal A. – 2019. – Vol.55, No.11. – p.207. - Bibliogr.:66.
http://dx.doi.org/10.1140/epja/i2019-12909-9

28.0 - Биология

168. Fadai, N.T. New Travelling Wave Solutions of the Porous–Fisher Model with a Moving Boundary / N.T.Fadai, M.J.Simpson // Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – p.095601. - Bibliogr.:26.
http://dx.doi.org/10.1088/1751-8121/ab6d3c
169. Guncheva, M. Synthesis and Stability of a Rapana Thomasiana Hemocyanin Conjugated with Vitamin B9 / M.Guncheva, [et al.] // Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – p.277-283. - Bibliogr.:21.
https://dl.uctm.edu/journal/node/j2020-2/5_19-49_p_277-283.pdf
170. Lazarova-Zdravkova, N. Effect of Storage Stability on the Antimicrobial Activity of Microencapsulated Via Spouted-Bed Rosemary Extracts / N.Lazarova-Zdravkova, [et al.] // Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – p.284-288. - Bibliogr.:21.
https://dl.uctm.edu/journal/node/j2020-2/6_19-151_p_284-288.pdf
171. Vezenkov, L. New Derivatives of Galanthamine Containing Peptide Fragment / L.Vezenkov, [et al.] // Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – p.251-260. - Bibliogr.:10.
https://dl.uctm.edu/journal/node/j2020-2/2_19-34_p_251-260.pdf
172. Zuckerman, D.M. Key Biology You Should Have Learned in Physics Class: Using Ideal-Gas Mixtures to Understand Biomolecular Machines / D.M.Zuckerman // American Journal of Physics. – 2020. – Vol.88, No.3. – p.182-193. - Bibliogr.:34.
https://doi.org/10.1119/10.0000634
173. Спицын, А.Н. Спектрофотометрическая характеристика конъюгатов иммуноглобулинов для диагностики возбудителей особо опасных инфекций / А.Н.Спицын, [и др.] // Оптика и спектроскопия. – 2020. – Т.128, №3. – с.430-434. - Библиогр.:22.
https://journals.ioffe.ru/articles/viewPDF/49071

СПИСОК ПРОСМОТРЕННЫХ ЖУРНАЛОВ


1. American Journal of Physics. – 2020. – Vol.88, No.3. – P.169-256.
2. Communications in Mathematical Physics. – 2020. – Vol.374, No.2. – P.369-1320.
3. Few-Body Systems. – 2020. – Vol.61, No.1.
4. Health Physics. – 2020. – Vol.118, No.1. – P.1-116.
5. IEEE Transactions on Nuclear Science. – 2020. – Vol.67, No.2. – P.P.425-472.
6. Journal of Chemical Technology and Metallurgy. – 2020. – Vol.55, No.2. – P.235-494.
7. Journal of Physics A: Mathematical and Theoretical. – 2020. – Vol.53, No.9. – P.09LT01-095601.
8. Journal of Physics: Condensed Matter. – 2020. – Vol.32, No.9. – P.094001-099501.
9. Mathematical Reports. – 2019. – Vol.21, No.1. – P.1-133.
10. Physica Scripta. – 2020. – Vol.95, No.3. – P.034001-035806.
11. Radiation Protection Dosimetry. – 2019. – Vol.186, No.1. – P.1-147.
12. Radiation Protection Dosimetry. – 2019. – Vol.186, No.4. – P.437-539.
13. Radiation Research. – 2020. – Vol.193, No.2. – P.95-198.
14. The European Physical Journal A. – 2019. – Vol.55, No.11.
15. The European Physical Journal A. – 2019. – Vol.55, No.12.
16. Журнал вычислительной математики и математической физики. – 2020. – Т.60, №4. – С.547-764.
17. Оптика и спектроскопия. – 2020. – Т.128, №3. – С.295-448.
18. Теоретическая и математическая физика. – 2020. – Т.202, №3. – С.325-501.


19