ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ «СТАТЬИ» № 9/10                       05.03.2018; 12.03.2018

 

С 133 - Дифференциальные и интегральные уравнения

1. Ohkitani, K. Cole–Hopf-Feynman–Kac Formula and Quasi-Invariance for Navier–Stokes Equations / K.Ohkitani // Journal of Physics A. – 2017. – Vol.50, No.40. – p.405501. - Bibliogr.:29.

http://dx.doi.org/10.1088/1751-8121/aa841a

С 15 - Теория вероятностей и математическая статистика

2. Семенова, Т.А. Принципы непараметрической обработки данных на примере работы "Эффект Доплера" / Т.А.Семенова, Е.Л.Финогеев // Физическое образование в вузах. – 2017. – Т.23, №2. – с.163-173. - Библиогр.:8.

С 3 - Физика

3. Grosberg, A.Yu. In Celebration of Ilya Lifshitz / A.Yu.Grosberg, [et al.] // Physics Today. – 2017. – Vol.70, No.11. – p.44-50. - Bibliogr.:15.

https://doi.org/10.1063/PT.3.3764

4. Трунов, Г.М. Об участии А.Г.Столетова в разработке международных единиц электрических величин / Г.М.Трунов // Физическое образование в вузах. – 2017. – Т.23, №3. – с.126-134. - Библиогр.:12.

С 31 - Системы единиц. Фундаментальные физические константы

5. Глазов, А.И. Международные сличения эталонов в области волоконно-оптических систем связи и передачи информации / А.И.Глазов, [др.] // Измерительная техника. – 2017. – №10. – с.66-71. –. - Библиогр.:10.                                                                                                               https://doi.org/10.1007/s11018-018-1319-3

 

6. Перепелкин, В.А. Государственный первичный эталон единицы мощности электромагнитных колебаний в диапазоне частот от 37,5 до 78,33 ГГц ГЭТ 167-2017 / В.А.Перепелкин, [др.] // Измерительная техника. – 2017. – №10. – с.3-6. - Библиогр.:7.

https://doi.org/10.1007/s11018-018-1303-y

7. Тищенко, В.А. Анализ измерительной области преобразователя магнитного дипольного момента / В.А.Тищенко, [др.] // Измерительная техника. – 2017. – №10. – с.55-57. - Библиогр.:5.

https://doi.org/10.1007/s11018-018-1316-6

8. Фетисов, И.Н. Визуальный метод магнетрона для определения e/m электрона в сравнении со стандартным методом магнетрона / И.Н.Фетисов // Физическое образование в вузах. – 2017. – Т.23, №1. – с.92-99. - Библиогр.:8.

 

9. Фетисов, И.Н. К вопросу экспериментального определения электрической постоянной / И.Н.Фетисов // Физическое образование в вузах. – 2017. – Т.23, №2. – с.127-133. - Библиогр.:9.

 

10. Шэнь, К. Разработка алгоритма коррекции инерциальной навигационной системы в автономном режиме / К.Шэнь, [др.] // Измерительная техника. – 2017. – №10. – с.16-20. - Библиогр.:11.

https://doi.org/10.1007/s11018-018-1306-8

С 321 - Классическая механика

11. Бунтин, Д.А. Влияние температуры носовой части конуса на спектры возмущений в гиперзвуковом пограничном слое / Д.А.Бунтин, [др.] // Журнал технической физики. Письма. – 2017. – Т.43, №20. – с.12-19. - Библиогр.:6.

http://journals.ioffe.ru/articles/viewPDF/45145

12. Хаджи, П.И. Колебания составного пружинного маятника / П.И.Хаджи, Н.С.Штацкая // Физическое образование в вузах. – 2017. – Т.23, №2. – с.134-142. - Библиогр.:2.

С 322 - Теория относительности

13. Ambjorn, J. Four-Dimensional CDT with Toroidal Topology / J.Ambjorn, [et al.] // Nuclear Physics B. – 2017. – Vol.922. – p.226-246. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nuclphysb.2017.06.026

14. Dray, T. The Geometry of Relativity / T.Dray // American Journal of Physics. – 2017. – Vol.85, No.9. – p.683-691. - Bibliogr.:22.

http://dx.doi.org/10.1119/1.4997027

15. Mathur, H. An Analysis of the LIGO Discovery Based on Introductory Physics / H.Mathur, [et al.] // American Journal of Physics. – 2017. – Vol.85, No.9. – p.676-682. - Bibliogr.:21.

http://dx.doi.org/10.1119/1.4985727

16. Mitchem, S.L. Student Understanding of Electric and Magnetic Fields in Materials / S.L.Mitchem, [et al.] // American Journal of Physics. – 2017. – Vol.85, No.9. – p.705-711. - Bibliogr.:34.

http://dx.doi.org/10.1119/1.4991376

17. Norsen, T. The Gravitational Self-Interaction of the Earth's Tidal Bulge / T.Norsen, [et al.] // American Journal of Physics. – 2017. – Vol.85, No.9. – p.663-669. - Bibliogr.:17.

http://dx.doi.org/10.1119/1.4985124

18. Pegna, G. An Extraordinary Tabletop Speed of Light Apparatus / G.Pegna // American Journal of Physics. – 2017. – Vol.85, No.9. – p.712-720. - Bibliogr.:20.

http://dx.doi.org/10.1119/1.4985728

19. Sack, A. Dripping Faucet in Extreme Spatial and Temporal Resolution / A.Sack, T.Poschel // American Journal of Physics. – 2017. – Vol.85, No.9. – p.649-654. - Bibliogr.:45.

https://dx.doi.org/10.1119/1.4979657

20. Tao, J. Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Static Frame / J.Tao, [et al.] // Nuclear Physics B. – 2017. – Vol.922. – p.346-383. - Bibliogr.:88.

http://dx.doi.org/10.1016/j.nuclphysb.2017.06.022

21. Yang, H.S. Mirror Symmetry in Emergent Gravity / H.S.Yang // Nuclear Physics B. – 2017. – Vol.922. – p.264-279. - Bibliogr.:37.

http://dx.doi.org/10.1016/j.nuclphysb.2017.07.003

22. Волков, В.Ф. Математическое моделирование движения заряженных частиц в электрическом поле системы зарядов / В.Ф.Волков, В.Г.Приданов // Физическое образование в вузах. – 2017. – Т.23, №3. – с.112-125. - Библиогр.:6.

 

23. Молотков, Н.Я. Сложение и интерференция двух когерентных электромагнитных волн с произвольной ориентацией линий поляризации / Н.Я.Молотков, А.В.Ермаков // Физическое образование в вузах. – 2017. – Т.23, №1. – с.50-62. - Библиогр.:10.

 

24. Мубаракшин, И.Р. Ошибки формального применения закона электромагнитной индукции Фарадея / И.Р.Мубаракшин // Физическое образование в вузах. – 2017. – Т.23, №1. – с.11-19. - Библиогр.:10.

 

25. Мубаракшин, И.Р. Электромагнитное поле соленоида / И.Р.Мубаракшин // Физическое образование в вузах. – 2017. – Т.23, №3. – с.46-53. - Библиогр.:6.

 

26. Юнин, В.С. Моделирование волновой картины, регистрируемой приемником, движущимся прямолинейно и равномерно относительно однородной изотропной среды, в которой распространяются волны от точечного источника / В.С.Юнин // Физическое образование в вузах. – 2017. – Т.23, №3. – с.93-100. - Библиогр.:2.

 

27. Юнин, В.С. Моделирование распространения волн от точечного источника, движущегося прямолинейно и равномерно относительно однородной изотропной среды / В.С.Юнин // Физическое образование в вузах. – 2017. – Т.23, №2. – с.26-33. - Библиогр.:3.

С 323 - Квантовая механика

28. Amaku, M. On the Definition of the Time Evolution Operator for Time-Independent Hamiltonians in Non-Relativistic Quantum Mechanics / M.Amaku, [et al.] // American Journal of Physics. – 2017. – Vol.85, No.9. – p.692-697. - Bibliogr.:26.

http://dx.doi.org/10.1119/1.4985723

29. Jatkar, D.P. Entangled Spins and Ghost-Spins / D.P.Jatkar, K.Narayan // Nuclear Physics B. – 2017. – Vol.922. – p.319-345. - Bibliogr.:36.

http://dx.doi.org/10.1016/j.nuclphysb.2017.07.002

30. Liao, S.-K. Satellite-to-Ground Quantum Key Distribution / S.-K.Liao, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.43-47. - Bibliogr.:31.

http://dx.doi.org/10.1038/nature23655

31. Ren, J.-G. Ground-to-Satellite Quantum Teleportation / J.-G.Ren, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.70-73. - Bibliogr.:27.

http://dx.doi.org/10.1038/nature23675

32. Schroeder, D.V. The Variational-Relaxation Algorithm for Finding Quantum Bound States / D.V.Schroeder // American Journal of Physics. – 2017. – Vol.85, No.9. – p.698-704. - Bibliogr.:28.

http://dx.doi.org/10.1119/1.4997165

33. Кологривов, В.Н. Замечания относительно определения постоянной Планка / В.Н.Кологривов // Физическое образование в вузах. – 2017. – Т.23, №3. – с.87-92. - Библиогр.:6.

 

34. Рудой, Ю.Г. Об одной интересной и важной модели в квантовой механике. I. Динамическое описание / Ю.Г.Рудой, Е.О.Оладимеджи (мл.) // Физическое образование в вузах. – 2017. – Т.23, №1. – с.20-33. - Библиогр.:9.

 

35. Рудой, Ю.Г. Об одной интересной и важной модели в квантовой механике. II. Термодинамическое описание / Ю.Г.Рудой, Е.О.Оладимеджи (мл.) // Физическое образование в вузах. – 2017. – Т.23, №2. – с.13-25. - Библиогр.:5.

С 323.5 - Теория взаимодействия частиц при высоких энергиях

36. Modarres, M. LHC Production of Forward-Center and Forward-Forward Di-Jets in the k t -Factorization and Transverse Dependent Unintegrated Parton Distribution Frameworks / M.Modarres, [et al.] // Nuclear Physics B. – 2017. – Vol.922. – p.94-112. - Bibliogr.:61.

http://dx.doi.org/10.1016/j.nuclphysb.2017.06.020

С 324.1а - Квантовая электродинамика. Эксперименты по проверке КЭД при высоких и низких энергиях

37. Hisano, J. Two-Loop Anomalous Dimensions for Four-Fermi Operators in Supersymmetric Theories / J.Hisano, [et al.] // Nuclear Physics B. – 2017. – Vol.922. – p.77-93. - Bibliogr.:23.

http://dx.doi.org/10.1016/j.nuclphysb.2017.06.021

С 324.1д - Квантовая хромодинамика

38. Zarrin, S. Solution of QCDÄQED Coupled DGLAP Equations at NLO / S.Zarrin, G.R.Boroun // Nuclear Physics B. – 2017. – Vol.922. – p.126-147. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nuclphysb.2017.06.016

С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны

39. Rasmussen, J. Galilean Contractions of W-Algebras / J.Rasmussen, C.Raymond // Nuclear Physics B. – 2017. – Vol.922. – p.435-479. - Bibliogr.:116.

http://dx.doi.org/10.1016/j.nuclphysb.2017.07.006

С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки

40. Foster, D. The Decay of Hopf Solitons in the Skyrme Model / D.Foster // Journal of Physics A. – 2017. – Vol.50, No.40. – p.405401. - Bibliogr.:14.

http://dx.doi.org/10.1088/1751-8121/aa86c2

41. Kachru, S. 3D String Theory and Umbral Moonshine / S.Kachru, [et al.] // Journal of Physics A. – 2017. – Vol.50, No.40. – p.404003. - Bibliogr.:27.

http://dx.doi.org/10.1088/1751-8121/aa6e07

42. Kong, L. Boundary-Bulk Relation in Topological Orders / L.Kong, [et al.] // Nuclear Physics B. – 2017. – Vol.922. – p.62-76. - Bibliogr.:44.

http://dx.doi.org/10.1016/j.nuclphysb.2017.06.023

43. Maghsoodi, E. Fractional-Wrapped Branes with Rotation, Linear Motion and Background Fields / E.Maghsoodi, D.Kamani // Nuclear Physics B. – 2017. – Vol.922. – p.280-292. - Bibliogr.:49.

http://dx.doi.org/10.1016/j.nuclphysb.2017.07.009

44. Malatesta, E.M. Two-Loop Corrections to Large Order Behavior of f4 Theory / E.M.Malatesta, [et al.] // Nuclear Physics B. – 2017. – Vol.922. – p.293-318. - Bibliogr.:37.

http://dx.doi.org/10.1016/j.nuclphysb.2017.07.011

С 325 - Статистическая физика и термодинамика

45. Демин, А.В. Лабораторная работа "Изучение законов теплового излучения" / А.В.Демин, Л.Г.Скорняков // Физическое образование в вузах. – 2017. – Т.23, №1. – с.71-77. - Библиогр.:4.

 

46. Прудникова, М.В. Лабораторная работа "Исследование температурной зависимости намагниченности аморфных ферромагнитных сплавов на вибрационном магнитометре" / М.В.Прудникова, А.М.Салецкий // Физическое образование в вузах. – 2017. – Т.23, №2. – с.107-117. - Библиогр.:6.

С 325.8 - Квантовые объекты низкой размерности (за исключением эффектов Холла)

47. Рыбаков, Ю.П. Взаимодействие двухслойного графена с внешним магнитным полем / Ю.П.Рыбаков, А.Б.Ахмед // Физическое образование в вузах. – 2017. – Т.23, №2. – с.5-12. - Библиогр.:12.

С 326 - Квантовая теория систем из многих частиц. Квантовая статистика

48. Ordonez, G. The Arrow of Time in Open Quantum Systems and Dynamical Breaking of the Resonance–Anti-Resonance Symmetry / G.Ordonez, N.Hatano // Journal of Physics A. – 2017. – Vol.50, No.40. – p.405304. - Bibliogr.:53.

http://dx.doi.org/10.1088/1751-8121/aa85ae

49. Skogvoll, V. Composite Fermion Basis for M-Component Bose Gases / V.Skogvoll, O.Liabotro // Journal of Physics A. – 2017. – Vol.50, No.40. – p.405301. - Bibliogr.:25.

http://dx.doi.org/10.1088/1751-8121/aa85f7

50. Zibrov, A.A. Tunable Interacting Composite Fermion Phases in a Half-Filled Bilayer-Graphene Landau Level / A.A.Zibrov, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.360-364. - Bibliogr.:30.

http://dx.doi.org/10.1038/nature23893

С 33 а - Нанофизика. Нанотехнология

51. Acerce, M. Metallic Molybdenum Disulfide Nanosheet-Based Electrochemical Actuators / M.Acerce, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.370-373. - Bibliogr.:30.

http://dx.doi.org/10.1038/nature23668

52. Kassem, S. Stereodivergent Synthesis with a Programmable Molecular Machine / S.Kassem, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.374-378. - Bibliogr.:30.

http://dx.doi.org/10.1038/nature23677

53. Martin, J.H. 3D Printing of High-Strength Aluminium Alloys / J.H.Martin, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.365-369. - Bibliogr.:32.

http://dx.doi.org/10.1038/nature23894

54. Гаврилов, Н.В. Нанокристаллические покрытия a-Al 2 O 3 , полученные реакционным термическим анодным испарением в дуговом разряде при низкой температуре / Н.В.Гаврилов, [др.] // Журнал технической физики. Письма. – 2017. – Т.43, №20. – с.86-94. - Библиогр.:11.

http://journals.ioffe.ru/articles/viewPDF/45154

С 332.8 - Синхротронное излучение. Лазеры на свободных электронах. Получение и использование рентгеновских лучей

55. Ahmadi, E. Lattice Design for an Ultra-Low Emittance Synchrotron Light Source / E.Ahmadi, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.93-100. - Bibliogr.:27.

http://dx.doi.org/10.1016/j.nima.2017.04.021

56. Drebot, I. Study of Photon–Photon Scattering Events / I.Drebot, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.9-12. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2016.07.039

57. Gadjev, I. High-Gain, Short Wavelength FEL in the Raman Regime / I.Gadjev, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.20-24. - Bibliogr.:8.

http://dx.doi.org/10.1016/j.nima.2016.09.050

58. Gover, A. Coherent Emission from a Bunched Electron Beam: Superradiance and Stimulated-Superradiance in a Uniform and Tapered Wiggler FEL / A.Gover, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.25-31. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2016.12.038

59. Inclan, C.M.C. Methodology Trends on Gamma and Electron Radiation Damage Simulation Studies in Solids Under High Fluency Irradiation Environments / C.M.C.Inclan, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.32-34. - Bibliogr.:23.

http://dx.doi.org/10.1016/j.nima.2017.01.019

60. Majernik, N. Resonant Excitation of Betatron Oscillations / N.Majernik, J.Rosenzweig // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.91-94. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2017.02.002

61. Marin, E. Collimation Study for LCLS / E.Marin, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.248-251. - Bibliogr.:13.

http://dx.doi.org/10.1016/j.nima.2017.05.052

62. Niknejadi, P. Discussion and Analytical Test for Inclusion of Advanced Field and Boundary Condition in Theory of Free Electron Lasers / P.Niknejadi, J.M.J.Madey // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.35-38. - Bibliogr.:9.

http://dx.doi.org/10.1016/j.nima.2017.01.039

63. Petrillo, V. Optical Beam with Vortices: A First Order Paraxial Analysis / V.Petrillo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.13-19. - Bibliogr.:28.

http://dx.doi.org/10.1016/j.nima.2016.08.051

64. Prat, E. Enhanced X-Ray Free-Electron-Laser Performance from Tilted Electron Beams / E.Prat, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.1-8. - Bibliogr.:75.

http://dx.doi.org/10.1016/j.nima.2016.06.135

65. Shafqat, N. Design Study of High Gradient, Low Impedance Accelerating Structures for the FERMI Free Electron Laser Linac Upgrade / N.Shafqat, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.78-87. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.nima.2017.04.018

66. Sudar, N. Phase Space Manipulations for Optimization of an Inverse Free Electron Laser / N.Sudar, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.39-42. - Bibliogr.:10.

http://dx.doi.org/10.1016/j.nima.2017.02.011

67. Villa, F. Generation and Characterization of Ultra-Short Electron Beams for Single Spike Infrared FEL Radiation at SPARC_LAB / F.Villa, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.43-46. - Bibliogr.:50.

http://dx.doi.org/10.1016/j.nima.2017.02.042

С 341.1ж - Источники радиоактивных излучений. Источники нейтронов

68. Fioreze, M. Conical Slit and Conventional X-Ray Sources: Challenging Steps for Calcium Spots Detection / M.Fioreze, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.171-181. - Bibliogr.:45.

http://dx.doi.org/10.1016/j.nima.2017.06.026

69. Hoshor, C.B. Real-Time Neutron Source Localization and Identification with a Hand-Held, Volumetrically-Sensitive, Moderating-Type Neutron Spectrometer / C.B.Hoshor, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.252-264. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2017.05.033

С 344.1 - Методы и аппаратура для регистрации элементарных частиц и фотонов

70. Ayyad, Y. Performance of Resistive Plate Chambers Under Irradiation of 136Xe at Relativistic Energies / Y.Ayyad, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.111-117. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2017.06.014

71. Bertelsen, M. The Automatic Neutron Guide Optimizer Guide_Bot / M.Bertelsen // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.195-203. - Bibliogr.:32.

http://dx.doi.org/10.1016/j.nima.2017.06.012

72. Binda, F. Generation of the Neutron Response Function of an NE213 Scintillator for Fusion Applications / F.Binda, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.222-229. - Bibliogr.:33.

http://dx.doi.org/10.1016/j.nima.2017.04.023

73. Bondi, M. Large-Size CsI(Tl) Crystal Read-Out by SiPM for Low-Energy Charged-Particles Detection / M.Bondi, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.148-153. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2017.06.024

74. Bornheim, A. Precision Timing Detectors with Cadmium-Telluride Sensor / A.Bornheim, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.32-39. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.nima.2017.04.024

75. Depero, E. High Purity 100 GeV Electron Identification with Synchrotron Radiation / E.Depero, V.N.Frolov, V.Lysan, V.A.Matveev, V.V.Myalkovskiy, V.D.Peshekhonov, D.V.Peshekhonov, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.196-201. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2017.05.028

76. Duenas, J.A. Characterization of an NTD Double-Sided Silicon Strip Detector Employing a Pulsed Proton Microbeam / J.A.Duenas, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2551-2560. - Bibliogr.:32.

https://doi.org/10.1109/TNS.2017.2734568

 

77. Dugger, M. Design and Construction of a High-Energy Photon Polarimeter / M.Dugger, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.115-127. - Bibliogr.:13.

http://dx.doi.org/10.1016/j.nima.2017.05.026

78. Fretwurst, E. Determination of the p-Spray Profile for n+p Silicon Sensors Using a MOSFET / E.Fretwurst, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.140-149. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2017.05.046

79. Fretwurst, E. The Influence of Edge Effects on the Determination of the Doping Profile of Silicon Pad Diodes / E.Fretwurst, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.231-236. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2017.04.020

80. Frosini, M. Charged Particle Tracking Without Magnetic Field: Optimal Measurement of Track Momentum by a Bayesian Analysis of the Multiple Measurements of Deflections Due to Multiple Scattering / M.Frosini, D.Bernard // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.182-194. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.nima.2017.06.030

81. Galunov, N.Z. Radiation Resistant Composite Scintillators Based on Al 2 O 3 :Ti Grains and Their Properties After Irradiation / N.Z.Galunov, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.104-110. - Bibliogr.:22.

http://dx.doi.org/10.1016/j.nima.2017.06.008

82. Giraldo, L.O. Using a Pulsed Laser Beam to Investigate the Feasibility of Sub-Pixel Position Resolution with Time-Correlated Transient Signals in 3D Pixelated CdZnTe Detectors / L.O.Giraldo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.7-14. - Bibliogr.:15.

http://dx.doi.org/10.1016/j.nima.2017.04.030

83. Grace, E. Index of Refraction, Rayleigh Scattering Length, and Sellmeier Coefficients in Solid and Liquid Argon and Xenon / E.Grace, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.204-208. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2017.06.031

84. Hassan, M.T. The aCORN Backscatter-Suppressed Beta Spectrometer / M.T.Hassan, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.51-57. - Bibliogr.:21.

http://dx.doi.org/10.1016/j.nima.2017.05.029

85. Heikinheimo, J. Detector Resolution in Positron Annihilation Doppler Broadening Experiments / J.Heikinheimo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.215-221. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2017.06.018

86. Heim, T. Self-Adjusting Threshold Mechanism for Pixel Detectors / T.Heim, M.Garcia-Sciveres // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.209-214. - Bibliogr.:9.

http://dx.doi.org/10.1016/j.nima.2017.06.040

87. Hussey, D.S. Neutron Imaging Detector with 2 mm Spatial Resolution Based on Event Reconstruction of Neutron Capture in Gadolinium Oxysulfide Scintillators / D.S.Hussey, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.9-12. - Bibliogr.:17.

http://dx.doi.org/10.1016/j.nima.2017.05.035

88. Kelly, K.J. Numerical Integration of Detector Response Functions Via Monte Carlo Simulations / K.J.Kelly, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.182-189. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.nima.2017.05.048

89. Kuzminchuk-Feuerstein, N. First Beam Test of a Liquid Cherenkov Detector Prototype for a Future TOF Measurements at the Super-FRS / N.Kuzminchuk-Feuerstein, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.207-212. - Bibliogr.:28.

http://dx.doi.org/10.1016/j.nima.2017.06.010

90. Meo, S.L. Study of Silicon + 6LiF Thermal Neutron Detectors: GEANT4 Simulations Versus Real Data / S.L.Meo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.48-57. - Bibliogr.:17.

http://dx.doi.org/10.1016/j.nima.2017.04.029

91. Minafra, N. Test of Ultra Fast Silicon Detectors for Picosecond Time Measurements with a New Multipurpose Read-Out Board / N.Minafra, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.88-92. - Bibliogr.:9.

http://dx.doi.org/10.1016/j.nima.2017.04.032

92. Mohammadi, A. Improvement of Crystal Identification Performance for a Four-Layer DOI Detector Composed of Crystals Segmented by Laser Processing / A.Mohammadi, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.29-35. - Bibliogr.:17.

http://dx.doi.org/10.1016/j.nima.2017.05.051

93. Nakano, Y. Measurement of Radon Concentration in Super-Kamiokande’s Buffer Gas / Y.Nakano, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.108-114. - Bibliogr.:40.

http://dx.doi.org/10.1016/j.nima.2017.04.037

94. Nosek, D. A Bayesian On–Off Analysis of Cosmic Ray Data / D.Nosek, J.Noskova // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.222-230. - Bibliogr.:31.

http://dx.doi.org/10.1016/j.nima.2017.06.034

95. Oya, T. Scintillation Properties of Ce-Doped Tb 3 Al 5 O 12  / T.Oya, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.134-139. - Bibliogr.:44.

http://dx.doi.org/10.1016/j.nima.2017.04.027

96. Pleshanov, N.K. Beam Choppers for Neutron Reflectometers at Steady Flux Reactors / N.K.Pleshanov // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.213-221. - Bibliogr.:11.

http://dx.doi.org/10.1016/j.nima.2017.06.011

97. Shutler, P.M.E. Signal-to-Noise Ratio of Singer Product Apertures / P.M.E.Shutler, K.Byard // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.237-258. - Bibliogr.:29.

http://dx.doi.org/10.1016/j.nima.2017.05.037

98. Strandlie, A. Exploration and Extension of an Improved Riemann Track Fitting Algorithm / A.Strandlie, R.Fruhwirth // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.72-77. - Bibliogr.:11.

http://dx.doi.org/10.1016/j.nima.2017.06.019

99. Stuhl, L. PANDORA, a Large Volume Low-Energy Neutron Detector with Real-Time Neutron–Gamma Discrimination / L.Stuhl, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.164-171. - Bibliogr.:27.

http://dx.doi.org/10.1016/j.nima.2017.06.015

100. Wu, Y. Scintillation Properties of a 2-Inch Diameter KCa 0.8 Sr 0.2 I 3 :Eu2+ Single Crystal / Y.Wu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.13-17. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2017.05.053

101. Yu, L. Multi-Layer Plastic Scintillation Detector for Intermediate- and High-Energy Neutrons with n-g Discrimination Capability / L.Yu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.118-128. - Bibliogr.:22.

http://dx.doi.org/10.1016/j.nima.2017.05.044

102. Zeng, Z.M. A Novel Method to Measure Low Flux Ambient Thermal Neutrons with 3He Proportional Counters / Z.M.Zeng, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.242-247. - Bibliogr.:13.

http://dx.doi.org/10.1016/j.nima.2017.04.009

103. Антипов, М.В. О статистической обработке данных в физическом практикуме / М.В.Антипов, [др.] // Физическое образование в вузах. – 2017. – Т.23, №1. – с.106-114. - Библиогр.:8.

 

104. Попов, Д.И. Анализ потенциальной точности измерения угловой координаты / Д.И.Попов // Измерительная техника. – 2017. – №10. – с.24-27. - Библиогр.:4.

https://doi.org/10.1007/s11018-018-1308-6

С 344.1с - Детекторы гамма-квантов

105. Atak, H. Photon Counting CT: Effects of Dynamic Beam Attenuator on Image Quality / H.Atak, P.M.Shikhaliev // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.58-71. - Bibliogr.:52.

http://dx.doi.org/10.1016/j.nima.2017.04.016

106. Goodman, D. 1-D Fast Neutron Source Localization Using Digital Pixelated 3-D Position-Sensitive CdZnTe Detectors / D.Goodman, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2531-2535. - Bibliogr.:17.

https://doi.org/10.1109/TNS.2017.2729942

107. Krieger, C. A GridPix-Based X-Ray Detector for the CAST Experiment / C.Krieger, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.101-107. - Bibliogr.:15.

http://dx.doi.org/10.1016/j.nima.2017.04.007

108. Krzyżanowska, A. Characterization of the Photon Counting CHASE Jr., Chip Built in a 40-nm CMOS Process with a Charge Sharing Correction Algorithm Using a Collimated X-Ray Beam / A.Krzyżanowska, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2561-2568. - Bibliogr.:18.

https://doi.org/10.1109/TNS.2017.2734821

109. Lee, D. A New Cross Detection Method for Improved Energy-Resolving Photon Counting Under Pulse Pile-Up / D.Lee, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.154-162. - Bibliogr.:22.

http://dx.doi.org/10.1016/j.nima.2017.05.042

110. Lee, S. Hadron Detection with a Dual-Readout Fiber Calorimeter / S.Lee, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.76-90. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2017.05.025

111. Moslemi, V. Introducing a Novel Parallel Hole Collimator: The Theoretical and Monte Carlo Investigations / V.Moslemi, M.Ashoor // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2578-2587. - Bibliogr.:40.

https://doi.org/10.1109/TNS.2017.2736881

112. Ruan, D. Separation of a Mixture of Simultaneous Dual-Tracer PET Signals: A Data-Driven Approach / D.Ruan, H.Liu // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2588-2597. - Bibliogr.:30.

https://doi.org/10.1109/TNS.2017.2736644

113. Shi, J. A Novel X-Ray Spectrometer for Plasma Hot Spot Diagnosis / J.Shi, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.72-75. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2017.05.030

114. Zaghloul, M.A.S. High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique / M.A.S.Zaghloul, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2569-2577. - Bibliogr.:22.

https://doi.org/10.1109/TNS.2017.2735546

С 344.3 - Ядерная электроника

115. Fausti, F. Design and Characterization of a 64 Channels ASIC Front-End Electronics for High-Flux Particle Beam Detectors / F.Fausti, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.1-6. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2017.04.025

116. Giordano, R. Redundant-Configuration Scrubbing of SRAM-Based FPGAs / R.Giordano, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2497-2504. - Bibliogr.:33.

https://doi.org/10.1109/TNS.2017.2730960

117. Joly, B. Sampling Rate and ADC Resolution Requirements in Digital Front-End Electronics for TOF PET / B.Joly, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2543-2550. - Bibliogr.:28.

https://doi.org/10.1109/TNS.2017.2732038

118. Liu, F. Radiation-Hardened CMOS Negative Voltage Reference for Aerospace Application / F.Liu, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2505-2510. - Bibliogr.:17.

https://doi.org/10.1109/TNS.2017.2733738

119. Marco-Hernandez, R. A Low-Noise Charge Amplifier for the ELENA Trajectory, Orbit, and Intensity Measurement System / R.Marco-Hernandez, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2465-2473. - Bibliogr.:16.

https://doi.org/10.1109/TNS.2017.2740238

120. Milosz, S. Pulse Height, Pulse Shape, and Time Interval Analyzer for Delayed a/b Coincidence Counting / S.Milosz, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2536-2542. - Bibliogr.:27.

https://doi.org/10.1109/TNS.2017.2731852

121. Wen, X. Pulse Shape Discrimination of Cs 2 LiYCl 6 :Ce3+ Detectors at High Count Rate Based on Triangular and Trapezoidal Filters / X.Wen, A.Enqvist // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.129-133. - Bibliogr.:20.

http://dx.doi.org/10.1016/j.nima.2017.06.007

С 345 - Ускорители заряженных частиц

122. Awida, M.H. Development of Low b Single-Spoke Resonators for the Front End of the Proton Improvement Plan-II at Fermilab / M.H.Awida, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2450-2464. - Bibliogr.:33.

https://doi.org/10.1109/TNS.2017.2737560

123. Barquest, B.R. RFQ Beam Cooler and Buncher for Collinear Laser Spectroscopy of Rare Isotopes / B.R.Barquest, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.18-28. - Bibliogr.:27.

http://dx.doi.org/10.1016/j.nima.2017.05.036

124. Cahill, A.D. RF Design for the TOPGUN Photogun: A Cryogenic Normal Conducting Copper Electron Gun / A.D.Cahill, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.105-108. - Bibliogr.:19.

http://dx.doi.org/10.1016/j.nima.2016.08.062

125. Gonzalez, E.M. An Accelerator-Based Boron Neutron Capture Therapy (BNCT) Facility Based on the 7Li(p, n)7Be / E.M.Gonzalez, G.M.Hernandez // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.148-151. - Bibliogr.:21.

http://dx.doi.org/10.1016/j.nima.2016.11.059

 

126. Gonzalez Lazo, E. Effects of Vacancies on Atom Displacement Threshold Energy Calculations Through Molecular Dynamics Methods in BaTiO 3  / E.Gonzalez Lazo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.144-147. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2016.07.056

127. Hattori, A. SRF Cavity Alignment Detection Method Using Beam-Induced HOM with Curved Beam Orbit / A.Hattori, H.Hayano // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.172-181. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2017.05.047

128. Joo, Y. Development of New S-Band RF Window for Stable High-Power Operation in Linear Accelerator RF System / Y.Joo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.1-8. - Bibliogr.:19.

http://dx.doi.org/10.1016/j.nima.2017.05.031

129. Khan, S. Ultrashort High-Brightness Pulses from Storage Rings / S.Khan // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.95-98. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2016.07.048

130. Kozak, M. Dielectric Laser Acceleration of Sub-Relativistic Electrons by Few-Cycle Laser Pulses / M.Kozak, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.84-86. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2016.12.051

131. Ma, W. Three-Dimensional Multi-Physics Analysis and Commissioning Frequency Tuning Strategy of a Radio-Frequency Quadrupole Accelerator / W.Ma, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.190-195. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2017.06.004

132. Marin, C.F.C. Radiobiological Concepts for Treatment Planning of Schemes That Combines External Beam Radiotherapy and Systemic Targeted Radiotherapy / C.F.C.Marin, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.152-156. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2017.01.059

133. Maxson, J. Ultrafast Laser Pulse Heating of Metallic Photocathodes and Its Contribution to Intrinsic Emittance / J.Maxson, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.99-104. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2016.08.032

134. Ody, A. Flat Electron Beam Sources for DLA Accelerators / A.Ody, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.75-83. - Bibliogr.:37.

http://dx.doi.org/10.1016/j.nima.2016.10.041

135. Pirez, E. S-Band 1.4 Cell Photoinjector Design for High Brightness Beam Generation / E.Pirez, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.109-113. - Bibliogr.:30.

http://dx.doi.org/10.1016/j.nima.2016.08.063

 

136. Prakash, R. Multipacting Studies in Elliptic SRF Cavities / R.Prakash, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.128-138. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.nima.2017.06.003

137. Prat, E. Outline of a Dielectric Laser Acceleration Experiment at SwissFEL / E.Prat, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.87-90. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2017.01.016

138. Xu, C. Multiple Bunch HOM Evaluation for ERL Cavities / C.Xu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.163-170. - Bibliogr.:14.

http://dx.doi.org/10.1016/j.nima.2017.05.024

139. Zhang, Z. Surface-Plasmon Enhanced Photoemission of a Silver Nano-Patterned Photocathode / Z.Zhang, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.114-118. - Bibliogr.:9.

http://dx.doi.org/10.1016/j.nima.2016.11.042

С 345 а - Общие сведения о проектируемых и действующих ускорителях

140. Chiadroni, E. Beam Manipulation for Resonant Plasma Wakefield Acceleration / E.Chiadroni, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.139-143. - Bibliogr.:46.

http://dx.doi.org/10.1016/j.nima.2017.01.017

141. Lueangaramwong, A. Numerical Simulations of Early-Stage Dynamics of Electron Bunches Emitted from Plasmonic Photocathodes / A.Lueangaramwong, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.119-124. - Bibliogr.:11.

http://dx.doi.org/10.1016/j.nima.2016.07.052

С 345 е - Фазотрон и сихрофазотрон. Ускорители на сверхвысокие энергии

142. Appel, S. Injection Optimization Through Generation of Flat Ion Beams / S.Appel, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.36-39. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.nima.2017.05.041

С 345 о - Электронная и ионная оптика. Формирование и анализ пучков

143. Campogiani, G. Electron Beam Trajectory and Optics Control in the ELI-NP Gamma Beam System / G.Campogiani, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.51-54. - Bibliogr.:5.

http://dx.doi.org/10.1016/j.nima.2016.08.055

144. Cianchi, A. Transverse Emittance Diagnostics for High Brightness Electron Beams / A.Cianchi, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.63-66. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2016.11.063

145. Craievich, P. Effects of the Quadrupole Wakefields in a Passive Streaker / P.Craievich, A.A.Lutman // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.55-59. - Bibliogr.:28.

http://dx.doi.org/10.1016/j.nima.2016.10.010

146. Curatolo, C. Phase Space Analysis of Secondary Beams Generated in Hadron–Photon Collisions / C.Curatolo, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.128-132. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2016.09.002

147. Curry, E. Simulation of 3-D Effects in THz-Based Phase Space Manipulation / E.Curry, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.67-70. - Bibliogr.:13.

http://dx.doi.org/10.1016/j.nima.2017.02.005

148. Huang, R. Generation of High Brightness Electron Beam by Brake-Applied Velocity Bunching with a Relatively Low Energy Chirp / R.Huang, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.65-71. - Bibliogr.:47.

http://dx.doi.org/10.1016/j.nima.2017.05.022

149. Kourkafas, G. Transverse Beam Matching Under the Influence of Space Charge / G.Kourkafas, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.133-138. - Bibliogr.:22.

http://dx.doi.org/10.1016/j.nima.2016.10.044

150. Marongiu, M. Thermal Behavior of the Optical Transition Radiation Screens for the ELI-NP Compton Gamma Source / M.Marongiu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.47-50. - Bibliogr.:11.

http://dx.doi.org/10.1016/j.nima.2016.07.040

151. Pellegriti, M.G. EuroGammaS Gamma Characterisation System for ELI-NP-GBS: The Nuclear Resonance Scattering Technique / M.G.Pellegriti, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.60-62. - Bibliogr.:7.

http://dx.doi.org/10.1016/j.nima.2016.11.003

152. Qiang, J. A Fast Numerical Integrator for Relativistic Charged Particle Tracking / J.Qiang // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.15-19. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2017.04.015

С 345 с - Магнитные поля и сверхпроводящие магниты. Магнитные измерения

153. Iino, A. Development of Flow-Loss Cryo-Accelerating Structure with High-Purity Copper / A.Iino, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.40-47. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2017.04.012

154. Рояк, М.Э. Применение новой модели остаточной намагниченности железа для расчета поворотного магнита ускорителя / М.Э.Рояк, [др.] // Журнал технической физики. Письма. – 2017. – Т.43, №20. – с.28-36. - Библиогр.:4.

http://journals.ioffe.ru/articles/viewPDF/45147

С 346.2 - Нуклоны и антинуклоны

155. Kahlbow, J. Neutron Radioactivity-Lifetime Measurements of Neutron-Unbound States / J.Kahlbow, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.265-271. - Bibliogr.:20.

http://dx.doi.org/10.1016/j.nima.2017.06.002

С 346.6 - Резонансы и новые частицы

156. Corliss, R. Searching for a Dark Photon with DarkLight / R.Corliss // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – p.125-127. - Bibliogr.:7.

http://dx.doi.org/10.1016/j.nima.2016.07.053

С 347 - Космические лучи

157. Abdellaoui, G. Cosmic Ray Oriented Performance Studies for the JEM-EUSO First Level Trigger / G.Abdellaoui, S.Biktemerova, M.Gonchar, D.Naumov, L.Tkachev, [a.o.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.150-163. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.nima.2017.05.043

158. Knurenko, S.P. Radio Emission of Air Showers with Extremely High Energy Measured by the Yakutsk Radio Array / S.P.Knurenko, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.230-241. - Bibliogr.:50.

http://dx.doi.org/10.1016/j.nima.2017.04.033

С 348 - Ядерные реакторы. Реакторостроение

159. Bose, D. An Interval Approach to Nonlinear Controller Design for Load-Following Operation of a Small Modular Pressurized Water Reactor / D.Bose, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2474-2488. - Bibliogr.:50.

https://doi.org/10.1109/TNS.2017.2728187

160. Марачев, А.А. Анализ динамики импульсного реактора ИБР-2М при статистически оптимальном автоматическом регуляторе / А.А.Марачев, Ю.Н.Пепелышев, А.К.Попов, Д.Сумхуу // Атомная энергия. – 2017. – Т.123, №3. – с.172-175. - Библиогр.:5.

https://doi.org/10.1007/s10512-018-0327-3

С 349 - Дозиметрия и физика защиты

161. Pfeiffer, D. The Radiation Field in the Gamma Irradiation Facility GIF++ at CERN / D.Pfeiffer, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – p.91-103. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2017.05.045

С 349 д - Биологическое действие излучений

162. Mao, X.W. Role of NADPH Oxidase as a Mediator of Oxidative Damage in Low-Dose Irradiated and Hindlimb-Unloaded Mice / X.W.Mao, [et al.] // Radiation Research. – 2017. – Vol.188, No.4.1. – p.392-399. - Bibliogr.:32.

http://dx.doi.org/10.1667/RR14754.1

163. Thome, C. Initial Characterization of the Growth Stimulation and Heat-Shock-Induced Adaptive Response in Developing Lake Whitefish Embryos After Ionizing Radiation Exposure / C.Thome, [et al.] // Radiation Research. – 2017. – Vol.188, No.4.2. – p.475-485. - Bibliogr.:50.

http://dx.doi.org/10.1667/RR14574.1

С 349.1 - Действие излучения на материалы

164. Ammar, M. System-Level Analysis of the Vulnerability of Processors Exposed to Single-Event Upsets Via Probabilistic Model Checking / M.Ammar, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2523-2530. - Bibliogr.:21.

https://doi.org/10.1109/TNS.2017.2736061

165. Chen, R. Single-Event Multiple Transients in Conventional and Guard-Ring Hardened Inverter Chains Under Pulsed Laser and Heavy-Ion Irradiation / R.Chen, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2511-2518. - Bibliogr.:39.

https://doi.org/10.1109/TNS.2017.2738646

166. Wesolowski, M.J. X-Ray Dosimetry During Low-Intensity Femtosecond Laser Ablation of Molybdenum in Ambient Conditions / M.J.Wesolowski, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2519-2522. - Bibliogr.:21.

https://doi.org/10.1109/TNS.2017.2739156

С 350 - Приложения методов ядерной физики в смежных областях

167. Marticke, F. Simulation Study of an X-Ray Diffraction System for Breast Tumor Detection / F.Marticke, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.20-31. - Bibliogr.:45.

http://dx.doi.org/10.1016/j.nima.2017.04.026

С 353 - Физика плазмы

168. Ким, В.П. Модель ионного потока и методика расчета эрозии стенок разрядной камеры стационарного плазменного двигателя / В.П.Ким, В.К.Абгарян // Журнал технической физики. Письма. – 2017. – Т.43, №20. – с.78-85. - Библиогр.:7.

http://journals.ioffe.ru/articles/viewPDF/45153

С 36 - Физика твердого тела

169. He, B.B. High Dislocation Density–Induced Large Ductility in Deformed and Partitioned Steels / B.B.He, [et al.] // Science. – 2017. – Vol.357, No.6355. – p.1029-1032. - Bibliogr.:53.

http://dx.doi.org/10.1126/science.aan0177

170. Ванягин, А.В. Измерение акустической нелинейности поврежденного металла / А.В.Ванягин, В.М.Родюшкин // Измерительная техника. – 2017. – №10. – с.42-44. - Библиогр.:10.

https://doi.org/10.1007/s11018-018-1312-x

С 37 - Оптика

171. Boyer, T.H. Interference between Source-Free Radiation and Radiation from Sources: Particle-Like Behavior for Classical Radiation / T.H.Boyer // American Journal of Physics. – 2017. – Vol.85, No.9. – p.670-675. - Bibliogr.:9.

http://dx.doi.org/10.1119/1.4991396

172. Молотков, Н.Я. Формирование понятия поляризации света и анализ характера поляризации / Н.Я.Молотков, О.В.Ломакина // Физическое образование в вузах. – 2017. – Т.23, №3. – с.25-37. - Библиогр.:11.

 

173. Синявский, Н.Я. Полярископическое определение оптической разности хода с помощью интерференционной диаграммы Мишеля Леви в лабораторном практикуме по оптике / Н.Я.Синявский, И.П.Корнева // Физическое образование в вузах. – 2017. – Т.23, №3. – с.78-86. - Библиогр.:12.

С 63 - Астрофизика

174. Mauk, B.H. Discrete and Broadband Electron Acceleration in Jupiter’s Powerful Aurora / B.H.Mauk, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.66-69. - Bibliogr.:24.

http://dx.doi.org/10.1038/nature23648

Ц 76 - Источники питания радиотехнических устройств. Выпрямители, стабилизаторы, преобразователи

175. Вараксина, Е.И. Литий-полимерные аккумуляторы в учебно-исследовательском проекте / Е.И.Вараксина, [др.] // Физическое образование в вузах. – 2017. – Т.23, №3. – с.150-157. - Библиогр.:4.

Ц 84 - Вычислительная техника и программирование

176. Baymani, S. Exploring RapidIO Technology Within a DAQ System Event Building Network / S.Baymani, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2598-2605. - Bibliogr.:16.

https://doi.org/10.1109/TNS.2017.2734564

Ц 841 - Электронные цифровые вычислительные машины

177. Dang, L.D.T. We-Quatro: Radiation-Hardened SRAM Cell with Parametric Process Variation Tolerance / L.D.T.Dang, [et al.] // IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – p.2489-2496. - Bibliogr.:18.

https://doi.org/10.1109/TNS.2017.2728180

178. Павлов, А.А. Обнаружение ошибок в запоминающих устройствах информационно-измерительных систем / А.А.Павлов, [др.] // Измерительная техника. – 2017. – №10. – с.12-16. - Библиогр.:10.

https://doi.org/10.1007/s11018-018-1305-9

Ц 843 - Распознавание образов

179. Wielgosz, M. Using LSTM Recurrent Neural Networks for Monitoring the LHC Superconducting Magnets / M.Wielgosz, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – p.40-50. - Bibliogr.:47.

http://dx.doi.org/10.1016/j.nima.2017.06.020

28.0 - Биология

180. Bittner, K.C. Behavioral Time Scale Synaptic Plasticity Underlies CA1 Place Fields / K.C.Bittner, [et al.] // Science. – 2017. – Vol.357, No.6355. – p.1033-1036. - Bibliogr.:36.

http://dx.doi.org/10.1126/science.aan3846

181. Burr, M.L. CMTM6 Maintains the Expression of PD-L1 and Regulates Anti-Tumour Immunity / M.L.Burr, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.101-105. - Bibliogr.:19.

http://dx.doi.org/10.1038/nature23643

182. Byndloss, M.X. Microbiota-Activated PPAR-g Signaling Inhibits Dysbiotic Enterobacteriaceae Expansion / M.X.Byndloss, [et al.] // Science. – 2017. – Vol.357, No.6351. – p.570-575. - Bibliogr.:25.

http://dx.doi.org/10.1126/science.aam9949

183. Cai, J. Eye Patches: Protein Assembly of Index-Gradient Squid Lenses / J.Cai, [et al.] // Science. – 2017. – Vol.357, No.6351. – p.564-569. - Bibliogr.:32.

http://dx.doi.org/10.1126/science.aal2674

184. Cohen, L.J. Commensal Bacteria Make GPCR Ligands That Mimic Human Signalling Molecules / L.J.Cohen, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.48-53. - Bibliogr.:37.

http://dx.doi.org/10.1038/nature23874

185. Gisriel, C. Structure of a Symmetric Photosynthetic Reaction Center–Photosystem / C.Gisriel, [et al.] // Science. – 2017. – Vol.357, No.6355. – p.1021-1025. - Bibliogr.:48.

http://dx.doi.org/10.1126/science.aan5611

186. Mass, E. A Somatic Mutation in Erythro-Myeloid Progenitors Causes Neurodegenerative Disease / E.Mass, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.389-393. - Bibliogr.:30.

http://dx.doi.org/10.1038/nature23672

187. Mezzadra, R. Identification of CMTM6 and CMTM4 as PD-L1 Protein Regulators / R.Mezzadra, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.106-110. - Bibliogr.:27.

http://dx.doi.org/10.1038/nature23669

188. Penn, A.C. Hippocampal LTP and Contextual Learning Require Surface Diffusion of AMPA Receptors / A.C.Penn, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.384-388. - Bibliogr.:27.

http://dx.doi.org/10.1038/nature23658

189. Pinheiro, H.T. Island Biogeography of Marine Organisms / H.T.Pinheiro, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.82-85. - Bibliogr.:26.

http://dx.doi.org/10.1038/nature23680

190. Shlezinger, N. Sterilizing Immunity in the Lung Relies on Targeting Fungal Apoptosis-Like Programmed Cell Death / N.Shlezinger, [et al.] // Science. – 2017. – Vol.357, No.6355. – p.1037-1041. - Bibliogr.:21.

http://dx.doi.org/10.1126/science.aan0365

191. Simeonov, D.R. Discovery of Stimulation-Responsive Immune Enhancers with CRISPR Activation / D.R.Simeonov, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.111-115. - Bibliogr.:27.

http://dx.doi.org/10.1038/nature23875

192. Sinclair, C. mTOR Regulates Metabolic Adaptation of APCs in the Lung and Controls the Outcome of Allergic Inflammation / C.Sinclair, [et al.] // Science. – 2017. – Vol.357, No.6355. – p.1014-1021. - Bibliogr.:43.

http://dx.doi.org/10.1126/science.aaj2155

193. Starr, T.N. Alternative Evolutionary Histories in the Sequence Space of an Ancient Protein / T.N.Starr, [et al.] // Nature. – 2017. – Vol.549, No.7672. – p.409-411. - Bibliogr.:30.

http://dx.doi.org/10.1038/nature23902

194. Stewart, E. Orthotopic Patient-Derived Xenografts of Paediatric Solid Tumours / E.Stewart, [et al.] // Nature. – 2017. – Vol.549, No.7670. – p.96-100. - Bibliogr.:16.

http://dx.doi.org/10.1038/nature23647

195. Белашов, А.В. Исследование показателя преломления обезвоженных клеток с помощью цифровой голографической микроскопии / А.В.Белашов, [др.] // Журнал технической физики. Письма. – 2017. – Т.43, №20. – с.46-55. - Библиогр.:16.

http://journals.ioffe.ru/articles/viewPDF/45149

28.08 - Экология

196. Tharimena, S. A Unified Continental Thickness from Seismology and Diamonds Suggests a Melt-Defined Plate / S.Tharimena, [et al.] // Science. – 2017. – Vol.357, No.6351. – p.580-583. - Bibliogr.:41.

http://dx.doi.org/10.1126/science.aan0741

 

СПИСОК ПРОСМОТРЕННЫХ ЖУРНАЛОВ


1. American Journal of Physics. – 2017. – Vol.85, No.9. – P.641-724.

2. IEEE Transactions on Nuclear Science. – 2017. – Vol.64, No.9. – P.2449-2608.

3. Journal of Physics A. – 2017. – Vol.50, No.40. – P.404001-405501.

4. Nature. – 2017. – Vol.549, No.7670. – P.1-124.

5. Nature. – 2017. – Vol.549, No.7672. – P.303-424.

6. Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.865. – P.1-162.

7. Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.866. – P.1-272.

8. Nuclear Instruments & Methods in Physics Research A. – 2017. – Vol.867. – P.1-258.

9. Nuclear Physics B. – 2017. – Vol.922. – P.1-550.

10. Physics Today. – 2017. – Vol.70, No.11. – P.1-80.

11. Radiation Research. – 2017. – Vol.188, No.4.1. – P.373-468.

12. Radiation Research. – 2017. – Vol.188, No.4.2. – P.469-547.

13. Science. – 2017. – Vol.357, No.6351. – P.525-620.

14. Science. – 2017. – Vol.357, No.6355. – P.945-1060.

15. Атомная энергия. – 2017. – Т.123, №3. – С.121-180.

16. Журнал технической физики. Письма. – 2017. – Т.43, №20. – С.1-96.

17. Измерительная техника. – 2017. – №10. – С.1-72.

18. Физическое образование в вузах. – 2017. – Т.23, №1. – С.1-170.

19. Физическое образование в вузах. – 2017. – Т.23, №2. – С.1-174.

20. Физическое образование в вузах. – 2017. – Т.23, №3. – С.1-157.