Информационный  бюллетень «Статьи»   42

22.10.2018


С 1 - Математика

1. Демидов, С.С. "Математический сборник" в контексте отечественной истории: к 150-летию создания журнала / С.С.Демидов, [и др.] // Математический сборник. – 2018. – Т.209, №7. – с.178-196. - Библиогр.:15.

http://mi.mathnet.ru/msb9023

С 131 - Высшая алгебра. Линейная алгебра. Теория матриц

2. Закирова, З.Х. О структуре проективной группы в псевдоримановом пространстве / З.Х.Закирова // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.30-41. - Библиогр.:13.

http://mi.mathnet.ru/tmf9492

С 133 - Дифференциальные и интегральные уравнения

3. Dorodnitsyn, V.A. Lie Group Classification of First-Order Delay Ordinary Differential Equations / V.A.Dorodnitsyn, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.20. – p.205202. - Bibliogr.:53.

http://dx.doi.org/10.1088/1751-8121/aaba91

4. Dorodnitsyn, V.A. Linear or Linearizable First-Order Delay Ordinary Differential Equations and Their Lie Point Symmetries / V.A.Dorodnitsyn, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.20. – p.205203. - Bibliogr.:17.

http://dx.doi.org/10.1088/1751-8121/aab3e9

5. Гильермо, Г.Л. Метод задачи Римана–Гильберта в применении к системе Никишина / Г.Л.Гильермо, В.В.Ассе // Математический сборник. – 2018. – Т.209, №7. – с.106-138. - Библиогр.:38.

http://mi.mathnet.ru/msb8889

6. Денисов, С.А. О росте многочленов ортогональных на единичной окружности с весом , удовлетворяющим условиям , - C L (T) / С.А.Денисов // Математический сборник. – 2018. – Т.209, №7. – с.71-105. - Библиогр.:21.

http://mi.mathnet.ru/msb8876

7. Жаринов, В.В. Анализ в дифференциальных алгебрах и модулях / В.В.Жаринов // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.3-21. - Библиогр.:26.

http://mi.mathnet.ru/tmf9566

8. Лопес-Гарсиа, А. Системы Никишина на звездных множествах: алгебраические свойства и слабая асимптотика соответствующих совместно ортогональных многочленов / А.Лопес-Гарсиа, Э.Минья-Диас // Математический сборник. – 2018. – Т.209, №7. – с.139-177. - Библиогр.:16.

http://mi.mathnet.ru/msb8768

С 133.2 - Уравнения математической физики

9. Babalic, C.N. Bilinear Approach to Kuperschmidt Super-KdV Type Equations / C.N.Babalic, A.S.Carstea // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225204. - Bibliogr.:31.

http://dx.doi.org/10.1088/1751-8121/aabda5

10. Morris, J.R. Small Deformations of Kinks and Walls / J.R.Morris // Annals of Physics. – 2018. – Vol.393. – p.122-131. - Bibliogr.:14.

http://dx.doi.org/10.1016/j.aop.2018.04.001

11. Weady, S. Circuit Bounds on Stochastic Transport in the Lorenz Equations / S.Weady, [et al.] // Physics Letters A. – 2018. – Vol.382, No.26. – p.1731-1737. - Bibliogr.:22.

http://dx.doi.org/10.1016/j.physleta.2018.04.035

12. Xu, H.-X. Breathers and Solitons on Two Different Backgrounds in a Generalized Coupled Hirota System with Four Wave Mixing / H.-X.Xu, [et al.] // Physics Letters A. – 2018. – Vol.382, No.26. – p.1738-1744. - Bibliogr.:39.

http://dx.doi.org/10.1016/j.physleta.2018.04.034

13. Захаров, С.В. Асимптотическое решение многомерного уравнения Бюргерса вблизи сингулярности / С.В.Захаров // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.42-49. - Библиогр.:21.

http://mi.mathnet.ru/tmf9479

С 135 - Функциональный анализ

14. Барашарт, Л. Экстремальные задачи с ограничениями в H2 и формулы Карлемана / Л.Барашарт, [и др.] // Математический сборник. – 2018. – Т.209, №7. – с.4-43. - Библиогр.:36.

http://mi.mathnet.ru/msb8900

С 136 - Теория функций и теория множеств

15. Bera, A. Benford Analysis of Quantum Critical Phenomena: First Digit Provides High Finite-Size Scaling Exponent While First Two and Further are Not Much Better / A.Bera, [et al.] // Physics Letters A. – 2018. – Vol.382, No.25. – p.1639-1644. - Bibliogr.:30.

http://dx.doi.org/10.1016/j.physleta.2018.04.020

С 137 - Теория функций комплексного переменного. Теория функций нескольких комплексных переменных

16. Гайсин, А.М. Экстремальные задачи в неквазианалитических классах Карлемана. Приложения / А.М.Гайсин // Математический сборник. – 2018. – Т.209, №7. – с.44-70. - Библиогр.:25.

http://mi.mathnet.ru/msb8758

С 15 - Теория вероятностей и математическая статистика

17. Fa, K.S. Fractional Ornstein–Uhlenbeck Noise / K.S.Fa // Annals of Physics. – 2018. – Vol.393. – p.327-334. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.aop.2018.04.019

18. Liu, R.-N. Stochastic Resonance in Underdamped Periodic Potential Systems with Alpha Stable Levy Noise / R.-N.Liu, Y.-M.Kang // Physics Letters A. – 2018. – Vol.382, No.25. – p.1656-1684. - Bibliogr.:60.

http://dx.doi.org/10.1016/j.physleta.2018.03.054

С 3 - Физика

19. Doebert, E. Towards TeV-Scale Electron-Positron Collisions: the Compact Linear Collider (CLIC) / E.Doebert, S.Sicking // Europhysics News. – 2018. – Vol.49, No.1. – p.24-28.

https://doi.org/10.1051/epn/2018102

20. Lee, D. Historic Sites: Institute for Advanced Study Princeton / D.Lee // Europhysics News. – 2018. – Vol.49, No.1. – p.4-5.


21. Sciacca, C. Historic Sites: IBM's Zurich Lab Ruschlikon, Switzerland / C.Sciacca // Europhysics News. – 2018. – Vol.49, No.1. – p.6.


22. Алферов, Ж.И. Юрий Моисеевич Каган (к 90-летию со дня рождения) / Ж.И.Алферов, [и др.] // Успехи физических наук. – 2018. – Т.188, №7. – с.799-800.

https://doi.org/10.3367/UFNr.2018.06.038365

С 321 - Классическая механика

23. Wu, J.Z. Theories and Applications of Second-Order Correlation of Longitudinal Velocity Increments at Three Points in Isotropic Turbulence / J.Z.Wu, [et al.] // Physics Letters A. – 2018. – Vol.382, No.25. – p.1665-1671. - Bibliogr.:44.

http://dx.doi.org/10.1016/j.physleta.2018.04.021

24. Zhu, Y.-M. Entanglement Distribution in Star Network Based on Spin Chain in Diamond / Y.-M.Zhu, L.Ma // Physics Letters A. – 2018. – Vol.382, No.25. – p.1651-1655. - Bibliogr.:26.

http://dx.doi.org/10.1016/j.physleta.2018.04.028


С 322 - Теория относительности

25. Azeyanagi, T. More on the New Large Limit of Matrix Models / T.Azeyanagi, [et al.] // Annals of Physics. – 2018. – Vol.393. – p.308-326. - Bibliogr.:21.

http://dx.doi.org/10.1016/j.aop.2018.04.010

26. Bliokh, K.Y. Lorentz-Boosted Evanescent Waves / K.Y.Bliokh // Physics Letters A. – 2018. – Vol.382, No.25. – p.1695-1700. - Bibliogr.:52.

http://dx.doi.org/10.1016/j.physleta.2018.04.023

27. Gron, O. No Gravitational Repulsion in the Schwarzschild Spacetime / O.Gron // Astroparticle Physics. – 2018. – Vol.102. – p.95-97. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.006

28. Ozcelik, H.T. Einstein Gravity with Torsion Induced by the Scalar Field / H.T.Ozcelik, [et al.] // Annals of Physics. – 2018. – Vol.393. – p.132-144. - Bibliogr.:60.

http://dx.doi.org/10.1016/j.aop.2018.04.012

29. Pandey, S. Equivalence of Einstein and Jordan Frames in Quantized Anisotropic Cosmological Models / S.Pandey, [et al.] // Annals of Physics. – 2018. – Vol.393. – p.93-106. - Bibliogr.:33.

http://dx.doi.org/10.1016/j.aop.2018.04.006

30. Sanchez, P.A. Scattering and Absorption of Massless Scalar Waves by Born–Infeld Black Holes / P.A.Sanchez, [et al.] // Annals of Physics. – 2018. – Vol.393. – p.107-121. - Bibliogr.:29.

http://dx.doi.org/10.1016/j.aop.2018.04.011

31. Tsao, K.-H. FIMP Dark Matter Freeze-in Gauge Mediation and Hidden Sector / K.-H.Tsao // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075001. - Bibliogr.:57.

http://dx.doi.org/10.1088/1361-6471/aac3b9

32. Новиков, И.Д. Антигравитация во Вселенной / И.Д.Новиков // Успехи физических наук. – 2018. – Т.188, №7. – с.773-770. - Библиогр.:16.

https://doi.org/10.3367/UFNr.2017.11.038258

С 323 - Квантовая механика

33. Cheng, S. Monogamy Relations of Nonclassical Correlations for Multi-Qubit States / S.Cheng, L.Liu // Physics Letters A. – 2018. – Vol.382, No.26. – p.1716-1720. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.physleta.2018.04.037

34. Horwitz, L. Relativistic Entanglement / L.Horwitz, R.I.Arshansky // Physics Letters A. – 2018. – Vol.382, No.26. – p.1701-1708. - Bibliogr.:22.

http://dx.doi.org/10.1016/j.physleta.2018.04.004


35. Olivares-Pilon, H. H+ 2 , HeH and H 2 : Approximating Potential Curves, Calculating Rovibrational States / H.Olivares-Pilon, A.V.Turbiner // Annals of Physics. – 2018. – Vol.393. – p.335-357. - Bibliogr.:36.

http://dx.doi.org/10.1016/j.aop.2018.04.021

36. Roa, L. The Joint Measurement Entanglement Can Significantly Offset the Effect of a Noisy Channel in Teleportation / L.Roa, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.21. – p.215301. - Bibliogr.:25.

http://dx.doi.org/10.1088/1751-8121/aabbb2

37. Rose, B.C. Observation of an Environmentally Insensitive Solid-State Spin Defect in Diamond / B.C.Rose, [et al.] // Science. – 2018. – Vol.361, No.6397. – p.60-63. - Bibliogr.:41.

http://dx.doi.org/10.1126/science.aao0290

38. Sparrow, C. Simulating the Vibrational Quantum Dynamics of Molecules Using Photonics / C.Sparrow, [et al.] // Nature. – 2018. – Vol.557, No.7707. – p.660-667. - Bibliogr.:50.

http://dx.doi.org/10.1038/s41586-018-0152-9

39. Tavernelli, I. On the Self-Interference in Electron Scattering: Copenhagen, Bohmian and Geometrical Interpretations of Quantum Mechanics / I.Tavernelli // Annals of Physics. – 2018. – Vol.393. – p.447-465. - Bibliogr.:51.

http://dx.doi.org/10.1016/j.aop.2018.03.018

40. Wetterich, C. Quantum Formalism for Classical Statistics / C.Wetterich // Annals of Physics. – 2018. – Vol.393. – p.1-70. - Bibliogr.:40.

http://dx.doi.org/10.1016/j.aop.2018.03.022

41. Иванов, М.Г. Двоичное представление координаты и импульса в квантовой механике / М.Г.Иванов // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.70-87. - Библиогр.:13.

http://mi.mathnet.ru/tmf9444

С 323.1 - Релятивистские волновые уравнения. Уравнения типа Бете-Солпитера. Квазипотенциал

42. Шабат, А.Б. Матрицы Картана в теории цепочек Тоды–Дарбу / А.Б.Шабат, В.Э.Адлер // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.22-29. - Библиогр.:7.

http://mi.mathnet.ru/tmf9564

С 324.1г - Калибровочные теории поля. Классические и квантовые поля Янга-Миллса. Спонтанно- нарушенные симметрии. Модели Великого объединения

43. Chen, Y.-A. Exact Bosonization in Two Spatial Dimensions and a New Class of Lattice Gauge Theories / Y.-A.Chen, [et al.] // Annals of Physics. – 2018. – Vol.393. – p.234-253. - Bibliogr.:29.

http://dx.doi.org/10.1016/j.aop.2018.03.024


С 324.1г1 - Калибровочные поля на решетке

44. Dhargyal, L. A Simple Extension of the SM That Can Explain the (g - 2) Anomaly, Small Neutrino Mass and a Dark Matter / L.Dhargyal // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075002. - Bibliogr.:16.

http://dx.doi.org/10.1088/1361-6471/aac40a

С 324.1д - Квантовая хромодинамика

45. Zubkov, M.A. Momentum Space Topology of QCD / M.A.Zubkov // Annals of Physics. – 2018. – Vol.393. – p.264-287. - Bibliogr.:75.

http://dx.doi.org/10.1016/j.aop.2018.04.016

С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны

46. Athron, P. FlexibleSUSY 2.0: Extensions to Investigate the Phenomenology of SUSY and Non-SUSY Models / P.Athron, [et al.] // Computer Physics Communications. – 2018. – Vol.230. – p.145-217. - Bibliogr.:250.

http://dx.doi.org/10.1016/j.cpc.2018.04.016

47. Karthiga, S. An Inclusive SUSY Approach to Position Dependent Mass Systems / S.Karthiga, [et al.] // Physics Letters A. – 2018. – Vol.382, No.25. – p.1645-1650. - Bibliogr.:37.

http://dx.doi.org/10.1016/j.physleta.2018.04.025

48. Metsaev, R.R. Continuous-Spin Mixed-Symmetry Fields in AdS(5) / R.R.Metsaev // Journal of Physics A. – 2018. – Vol.51, No.21. – p.215401. - Bibliogr.:38.

http://dx.doi.org/10.1088/1751-8121/aabcda

С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки

49. Mathew, A. Effect of Minimal Length Uncertainty on the Mass–Radius Relation of White Dwarfs / A.Mathew, M.K.Nandy // Annals of Physics. – 2018. – Vol.393. – p.184-205. - Bibliogr.:50.

http://dx.doi.org/10.1016/j.aop.2018.04.008

С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация

50. Bender, C.M. Asymptotic Analysis of the Local Potential Approximation to the Wetterich Equation / C.M.Bender, S.Sarkar // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225202. - Bibliogr.:22.

http://dx.doi.org/10.1088/1751-8121/aabf63


51. Fucci, G. Vacuum Instability in Kaluza–Klein Manifolds / G.Fucci // Journal of Physics A. – 2018. – Vol.51, No.21. – p.215202. - Bibliogr.:40.

http://dx.doi.org/10.1088/1751-8121/aabe9b

С 325 - Статистическая физика и термодинамика

52. Ayzatsky, M.I. Wave Propagation in Stratified Medium: New Matrix Form of the Wave Difference Equation / M.I.Ayzatsky // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.24-28. - Bibliogr.:33.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_24.pdf

53. Huang, D. Role of Electron Back Action on Photons in Hybridizing Double-Layer Graphene Plasmons with Localized Photons / D.Huang, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.204001. - Bibliogr.:63.

http://dx.doi.org/10.1088/1361-648X/aabb7e

54. Myint, P.C. Rapid Freezing of Water Under Dynamic Compression / P.C.Myint, J.L.Belof // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.23. – p.233002. - Bibliogr.:163.

http://dx.doi.org/10.1088/1361-648X/aac14f

55. Pogatscher, S. Monotropic Polymorphism in a Glass-Forming Metallic Alloy / S.Pogatscher, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.23. – p.234002. - Bibliogr.:43.

http://dx.doi.org/10.1088/1361-648X/aac054

56. Толченников, А.А. Простые точные решения и асимптотика локализованных решений двумерного безмассового уравнения Дирака для графена / А.А.Толченников // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.64-69. - Библиогр.:8.

http://mi.mathnet.ru/tmf9521

С 325.1 - Точно решаемые и решеточные модели

57. Arnaudon, A. Structure Preserving Noise and Dissipation in the Toda Lattice / A.Arnaudon // Journal of Physics A. – 2018. – Vol.51, No.21. – p.214001. - Bibliogr.:39.

http://dx.doi.org/10.1088/1751-8121/aabcec

58. Hincapie-F, A.F. Spin-1 Bose–Hubbard Model with Two- and Three-Body Interactions / A.F.Hincapie-F, [et al.] // Physics Letters A. – 2018. – Vol.382, No.26. – p.1760-1765. - Bibliogr.:51.

http://dx.doi.org/10.1016/j.physleta.2018.04.039

59. Martins, M.J. Integrability of the Odd Eight-Vertex Model with Symmetric Weights / M.J.Martins // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225002. - Bibliogr.:16.

http://dx.doi.org/10.1088/1751-8121/aab9cc

60. Panagiotou, E. Linking Matrices in Systems with Periodic Boundary Conditions / E.Panagiotou, K.C.Millett // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225001. - Bibliogr.:40.

http://dx.doi.org/10.1088/1751-8121/aabd4b

61. Quan, J. Continuous Spatial Public Goods Game with Self and Peer Punishment Based on Particle Swarm Optimization / J.Quan, [et al.] // Physics Letters A. – 2018. – Vol.382, No.26. – p.1721-1730. - Bibliogr.:74.

http://dx.doi.org/10.1016/j.physleta.2018.04.031

62. Roy, S. Deterministic Quantum Dense Coding Networks / S.Roy, [et al.] // Physics Letters A. – 2018. – Vol.382, No.26. – p.1709-1715. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.physleta.2018.04.033

63. Sajna, A.S. Phase Diagrams and Hofstadter Butterflies in the Strongly Correlated Bosonic Systems on the Lattices with Dirac Points / A.S.Sajna, T.P.Polak // Annals of Physics. – 2018. – Vol.393. – p.215-233. - Bibliogr.:90.

http://dx.doi.org/10.1016/j.aop.2018.03.021

64. Takasaki, K. Toda Hierarchies and Their Applications / K.Takasaki // Journal of Physics A. – 2018. – Vol.51, No.20. – p.203001. - Bibliogr.:94.

http://dx.doi.org/10.1088/1751-8121/aabc14

65. Лихачев, В.Н. Функция Грина в задаче о динамике заряда на одномерной решетке с примесным центром / В.Н.Лихачев, Г.А.Виноградов // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.88-98. - Библиогр.:12.

http://mi.mathnet.ru/tmf9459

66. Розиков, У.А. Крайность трансляционно-инвариантных мер Гиббса для модели Поттса на дереве Кэли / У.А.Розиков, [и др.] // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.117-134. - Библиогр.:19.

http://mi.mathnet.ru/tmf9448

С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы

67. Lohe, M.A. Higher-Dimensional Generalizations of the Watanabe–Strogatz Transform for Vector Models of Synchronization / M.A.Lohe // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225101. - Bibliogr.:53.

http://dx.doi.org/10.1088/1751-8121/aac030

С 325.8 - Квантовые объекты низкой размерности (за исключением эффектов Холла)

68. Gudmundsson, V. Current Correlations for the Transport of Interacting Electrons Through Parallel Quantum Dots in a Photon Cavity / V.Gudmundsson, [et al.] // Physics Letters A. – 2018. – Vol.382, No.25. – p.1672-1678. - Bibliogr.:39.

http://dx.doi.org/10.1016/j.physleta.2018.04.017

69. Ivanizki, D. A Generalization of the Carnahan–Starling Approach with Applications to Four- and Five-Dimensional Hard Spheres / D.Ivanizki // Physics Letters A. – 2018. – Vol.382, No.26. – p.1745-1751. - Bibliogr.:38.

http://dx.doi.org/10.1016/j.physleta.2018.04.036

70. Krawiec, M. Functionalization of Group-14 Two-Dimensional Materials / M.Krawiec // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.23. – p.233003. - Bibliogr.:380.

http://dx.doi.org/10.1088/1361-648X/aac149

71. Sahin, M. Effect of the Shell Material and Confinement Type on the Conversion Efficiency of Core/Shell Quantum Dot Nanocrystal Solar Cells / M.Sahin // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.205301. - Bibliogr.:34.

http://dx.doi.org/10.1088/1361-648X/aabb7f

72. Slota, M. Magnetic Edge States and Coherent Manipulation of Graphene Nanoribbons / M.Slota, [et al.] // Nature. – 2018. – Vol.557, No.7707. – p.691-695. - Bibliogr.:30.

http://dx.doi.org/10.1038/s41586-018-0154-7

73. Шека, Е.Ф. Физика и химия графена. Эмерджентность, магнетизм, механофизика и механохимия / Е.Ф.Шека, [и др.] // Успехи физических наук. – 2018. – Т.188, №7. – с.720-772. - Библиогр.:240.

https://doi.org/10.3367/UFNr.2017.11.038233

С 326 - Квантовая теория систем из многих частиц. Квантовая статистика

74. Dressel, M. Electrodynamics of Quantum Spin Liquids / M.Dressel, A.Pustogow // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.203001. - Bibliogr.:117.

http://dx.doi.org/10.1088/1361-648X/aabc1f

75. Galtier, S. On the Origin of the Energy Dissipation Anomaly in (Hall) Magnetohydrodynamics / S.Galtier // Journal of Physics A. – 2018. – Vol.51, No.20. – p.205501. - Bibliogr.:49.

http://dx.doi.org/10.1088/1751-8121/aabbb5

76. Harnad, J. Asymptotics of Quantum Weighted Hurwitz Numbers / J.Harnad, J.Ortmann // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225201. - Bibliogr.:24.

http://dx.doi.org/10.1088/1751-8121/aabf6a

77. Lazic, N. Double Line Groups: Structure, Irreducible Representations and Spin Splitting of the Bands / N.Lazic, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.22. – p.225203. - Bibliogr.:29.

http://dx.doi.org/10.1088/1751-8121/aabe9a

78. Miller Jr, W. The Quantum n-Body Problem in Dimension d n – 1: Ground State / W.Miller Jr, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.20. – p.205201. - Bibliogr.:14.

http://dx.doi.org/10.1088/1751-8121/aabb10

79. Schroeter, D. MnSi Nanostructures Obtained from Epitaxially Grown Thin Films: Magnetotransport and Hall Effect / D.Schroeter, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.23. – p.235805. - Bibliogr.:49.

http://dx.doi.org/10.1088/1361-648X/aabf5c


80. Sun, S. A Single-Photon Switch and Transistor Enabled by a Solid-State Quantum Memory / S.Sun, [et al.] // Science. – 2018. – Vol.361, No.6397. – p.57-60. - Bibliogr.:32.

http://dx.doi.org/10.1126/science.aat3581

81. Wei, Q. A New Superhard Carbon Allotrope: Orthorhombic C20 / Q.Wei, [et al.] // Physics Letters A. – 2018. – Vol.382, No.25. – p.1685-1689. - Bibliogr.:38.

http://dx.doi.org/10.1016/j.physleta.2018.04.024

С 33 а - Нанофизика. Нанотехнология

82. Liu, Y. Approaching the Schottky–Mott Limit in Van Der Waals Metal–Semiconductor Junctions / Y.Liu, [et al.] // Nature. – 2018. – Vol.557, No.7707. – p.696-700. - Bibliogr.:30.

http://dx.doi.org/10.1038/s41586-018-0129-8

83. Васильев, В.П. Современное состояние высокоточной лазерной дальнометрии / В.П.Васильев // Успехи физических наук. – 2018. – Т.188, №7. – с.790-797. - Библиогр.:11.

https://doi.org/10.3367/UFNr.2017.04.038147

С 332 - Электромагнитные взаимодействия

84. Dattoli, G. Free Electron Coherent Sources: From Microwave to X-Rays / G.Dattoli, [et al.] // Physics Reports. – 2018. – Vol.739. – 1-51. - Bibliogr.:109.

http://dx.doi.org/10.1016/j.physrep.2018.02.005

85. He, Z.-M. Stationary States and Rotational Properties of Spin–Orbit-Coupled Bose–Einstein Condensates Held Under a Toroidal Trap / Z.-M.He, [et al.] // Physics Letters A. – 2018. – Vol.382, No.25. – p.1690-1694. - Bibliogr.:61.

http://dx.doi.org/10.1016/j.physleta.2018.04.032

86. Kui, Z. Performance of the 2 x 4-Cell Superconducting Linac Module for the THz-FEL Facility / Z.Kui, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.29-34. - Bibliogr.:7.

http://dx.doi.org/10.1016/j.nima.2018.03.054

87. Li, K. Systematic Design and Three-Dimensional Simulation of X-Ray FEL Oscillator for Shanghai Coherent Light Facility / K.Li, H.Deng // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.40-47. - Bibliogr.:41.

http://dx.doi.org/10.1016/j.nima.2018.03.072

88. Tanaka, T. Absolute Laser-Intensity Measurement and Online Monitor Calibration Using a Calorimeter at a Soft X-Ray Free-Electron Laser Beamline in SACLA / T.Tanaka, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.107-110. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2018.03.045

С 341 - Атомные ядра

89. Arslanaliev, A. Applications of the Kharkov Potential in the Theory of Nuclear Forces and Nuclear Reactions / A.Arslanaliev, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.3-7. - Bibliogr.:5.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_3.pdf

90. Rico, E. SO(3) "Nuclear Physics" with Ultracold Gases / E.Rico, [et al.] // Annals of Physics. – 2018. – Vol.393. – p.466-483. - Bibliogr.:47.

http://dx.doi.org/10.1016/j.aop.2018.03.020

С 341 е - Ядерная астрофизика

91. Tumino, A. An Increase in the 12C + 12C Fusion Rate from Resonances at Astrophysical Energies / A.Tumino, [et al.] // Nature. – 2018. – Vol.557, No.7707. – p.687-690. - Bibliogr.:28.

http://dx.doi.org/10.1038/s41586-018-0149-4

С 341.1 - Радиоактивность

92. Dokania, N. An Improved Half-Life Limit of the Double Beta Decay of 94Zr into the Excited State of 94Mo / N.Dokania, [et al.] // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075104. - Bibliogr.:16.

http://dx.doi.org/10.1088/1361-6471/aac7ed

93. Sun, X.-D. Decay Preformation Probabilities Across the N = 126 Shell Closure Based on the Single Particle Energy Spectra / X.-D.Sun, H.-F.Zhang // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075106. - Bibliogr.:53.

http://dx.doi.org/10.1088/1361-6471/aac981

С 342 - Прохождение частиц и гамма-квантов через вещество

94. Li, C.-K. Nonlinear Electronic Stopping Power of Channeled Slow Light Ions in ZnSe: Evidence of Energy Loss Caused by Formation and Breaking of Chemical Bond / C.-K.Li, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.41-45. - Bibliogr.:37.

http://dx.doi.org/10.1016/j.nimb.2018.04.034

95. Zobkalo, I.A. Investigation of TbMn 2 O 5 by Polarized Neutron Diffraction / I.A.Zobkalo, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.205804. - Bibliogr.:27.

http://dx.doi.org/10.1088/1361-648X/aabdf6

С 343 - Ядерные реакции

96. Shehla. Low-Energy Proton Induced M X-Ray Production Cross Sections for 70 Yb, 81 Tl and 82 Pb / Shehla, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.34-40. - Bibliogr.:32.

http://dx.doi.org/10.1016/j.nimb.2018.04.017

С 344.1 - Методы и аппаратура для регистрации элементарных частиц и фотонов

97. Abdellaoui, G. EUSO-TA – First Results from a Ground-Based EUSO Telescope / G.Abdellaoui, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.98-111. - Bibliogr.:28.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.007

98. Apresyan, A. Studies of Uniformity of 50 m Low-Gain Avalanche Detectors at the Fermilab Test Beam / A.Apresyan, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.158-172. - Bibliogr.:17.

http://dx.doi.org/10.1016/j.nima.2018.03.074

99. Asaoka, Y. On-Orbit Operations and Offline Data Processing of CALET Onboard the ISS / Y.Asaoka, [et al.] // Astroparticle Physics. – 2018. – Vol.100. – p.29-37. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.astropartphys.2018.02.010

100. Bellotti, G. ARDESIA Detection Module: A Four-Channel Array of SDDs for Mcps X-Ray Spectroscopy in Synchrotron Radiation Applications / G.Bellotti, [et al.] // IEEE Transactions on Nuclear Science. – 2018. – Vol.65, No.7. – p.1355-1364. - Bibliogr.:23.

https://doi.org/10.1109/TNS.2018.2838673

101. Guan, W. Optimization Study on Structural Analyses for the J-PARC Mercury Target Vessel / W.Guan, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.8-19. - Bibliogr.:19.

http://dx.doi.org/10.1016/j.nima.2018.03.047

102. Hu, Z. Neutron Field Measurement at the Experimental Advanced Superconducting Tokamak Using a Bonner Sphere Spectrometer / Z.Hu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.100-106. - Bibliogr.:30.

http://dx.doi.org/10.1016/j.nima.2018.04.010

103. Ilisie, V. Building Blocks of a Multi-Layer PET with Time Sequence Photon Interaction Discrimination and Double Compton Camera / V.Ilisie, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.74-83. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2018.03.076

104. Lee, J.-W. Experimental Station for Ultrafast Extreme Ultraviolet Spectroscopy for Non-Equilibrium Dynamics in Warm Dense Matter / J.-W.Lee, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.120-125. - Bibliogr.:42.

http://dx.doi.org/10.1016/j.nima.2018.04.016

105. Liu, Z.-K. Modeling the Interaction of a Heavily Beam Loaded SRF Cavity with Its Low-Level RF Feedback Loops / Z.-K.Liu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.57-71. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nima.2018.03.046

106. Lv, H. Calibration of the LHAASO-KM2A Electromagnetic Particle Detectors Using Charged Particles Within the Extensive Air Showers / H.Lv, [et al.] // Astroparticle Physics. – 2018. – Vol.100. – p.22-28. - Bibliogr.:13.

http://dx.doi.org/10.1016/j.astropartphys.2018.02.011

107. Mahata, K. Particle Identification Using Digital Pulse Shape Discrimination in a nTD Silicon Detector with a 1 GHz Sampling Digitizer / K.Mahata, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.20-24. - Bibliogr.:17.

http://dx.doi.org/10.1016/j.nima.2018.03.052

108. Maslyanchuk, O. Performance Comparison of X- and -Ray CdTe Detectors with MoO x , TiO x , and TiN Schottky Contacts / O.Maslyanchuk, [et al.] // IEEE Transactions on Nuclear Science. – 2018. – Vol.65, No.7. – p.1365-1370. - Bibliogr.:21.

https://doi.org/10.1109/TNS.2018.2838766

109. Mellone, O.A.P. Background Radiation in Inelastic X-Ray Scattering and X-Ray Emission Spectroscopy. A Study for Johann-Type Spectrometers / O.A.P.Mellone, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.119-128. - Bibliogr.:42.

http://dx.doi.org/10.1016/j.nima.2018.03.036

110. Musgrave, M.M. Measurement of the Absolute Neutron Beam Polarization from a Supermirror Polarizer and the Absolute Efficiency of a Neutron Spin Rotator for the NPDGamma Experiment Using a Polarized 3He Neutron Spin-Filter / M.M.Musgrave, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.19-28. - Bibliogr.:23.

http://dx.doi.org/10.1016/j.nima.2018.03.055

111. Paredes, B. Response of Photomultiplier Tubes to Xenon Scintillation Light / B.Paredes, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.56-66. - Bibliogr.:37.

http://dx.doi.org/10.1016/j.astropartphys.2018.04.006

112. Pavicevic, M.K. Lorandite from Allchar as Geochemical Detector for pp-Solar Neutrinos / M.K.Pavicevic, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.62-73. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2018.03.039

113. Roger, T. Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) Project / T.Roger, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.126-134. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2018.04.003

114. Sun, Y.Z. The Drift Chamber Array at the External Target Facility in HIRFL-CSR / Y.Z.Sun, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.72-80. - Bibliogr.:23.

http://dx.doi.org/10.1016/j.nima.2018.03.044


115. Takahashi, M. A Technique for Estimating the Absolute Gain of a Photomultiplier Tube / M.Takahashi, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.1-7. - Bibliogr.:7.

http://dx.doi.org/10.1016/j.nima.2018.03.034

116. Turecek, D. Application of Timepix3 Based CdTe Spectral Sensitive Photon Counting Detector for PET Imaging / D.Turecek, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.84-89. - Bibliogr.:19.

http://dx.doi.org/10.1016/j.nima.2018.04.007

117. Van Der Ende, B.M. Use of SRIM and Garfield with Geant4 for the Characterization of a Hybrid 10B/3He Neutron Detector / B.M.Van Der Ende, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.138-144. - Bibliogr.:23.

http://dx.doi.org/10.1016/j.nima.2018.03.056

118. Wade, C. Construction, Characterization, and Environmental Testing of a Laue Lens Prototype Using Fe and Al Crystals / C.Wade, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.135-143. - Bibliogr.:10.

http://dx.doi.org/10.1016/j.nima.2018.04.005

119. Wang, Z. Measurement and Analysis of the Conversion Gain Degradation of the CIS Detectors in Harsh Radiation Environments / Z.Wang, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.35-39. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2018.04.002

120. Yamamoto, S. Development of Ultrahigh Resolution Alpha Particle Imaging Detector Using 1 mm Channel Size Si-PM Array / S.Yamamoto, W.Kawaguchi // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.33-38. - Bibliogr.:12.

http://dx.doi.org/10.1016/j.nima.2018.03.063

121. Yu, J. Pulse Shape Discrimination Based on Fast Signals from Silicon Photomultipliers / J.Yu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.129-137. - Bibliogr.:10.

http://dx.doi.org/10.1016/j.nima.2018.03.010

122. Zoul, D. 3D Reconstruction of Radioactive Sample Utilizing Gamma Tomography / D.Zoul, P.Zhanal // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.107-111. - Bibliogr.:17.

http://dx.doi.org/10.1016/j.nima.2018.03.071

С 344.3 - Ядерная электроника

123. Huang, Y. The Flash ADC System and PMT Waveform Reconstruction for the Daya Bay Experiment / Y.Huang, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.48-55. - Bibliogr.:18.


С 344.4б - Методы приготовления тонких пленок

124. Strand, J. Intrinsic Charge Trapping in Amorphous Oxide Films: Status and Challenges / J.Strand, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.23. – p.233001. - Bibliogr.:181.

http://dx.doi.org/10.1088/1361-648X/aac005

С 345 - Ускорители заряженных частиц

125. Ayzatsky, M.I. A Novel Approach to the Synthesis of the Electromagnetic Field Distribution in a Chain of Coupled Resonators / M.I.Ayzatsky // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.29-37. - Bibliogr.:70.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_29.pdf

126. Ayzatsky, M.I. Analysis of Short Electron Bunches Shaping in a Linac / M.I.Ayzatsky, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.81-85. - Bibliogr.:16.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_81.pdf

127. Ayzatsky, N.I. Formation of the Electron Beamin a Secondary-Emission Magnetron Gun Its Starting by Anodulum High-Voltage Pulse / N.I.Ayzatsky, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.19-23. - Bibliogr.:8.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_19.pdf

128. Belikov, A.G. Investigation of Beam Extraction and Formation in the Ions Injector / A.G.Belikov, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.63-67. - Bibliogr.:10.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_63.pdf

129. Belikov, A.G. Transport and Matching of the Injecting Beam / A.G.Belikov, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.68-72. - Bibliogr.:5.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_68.pdf


130. Bett, D.R. Compensation of Orbit Distortion Due to Quadrupole Motion Using Feed-Forward Control at KEK ATF / D.R.Bett, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.10-18. - Bibliogr.:25.

http://dx.doi.org/10.1016/j.nima.2018.03.037

131. Duckitt, W.D. The Design and Implementation of a Broadband Digital Low-Level RF Control System for the Cyclotron Accelerators at iThemba LABS / W.D.Duckitt, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.1-9. - Bibliogr.:16.

http://dx.doi.org/10.1016/j.nima.2018.03.064

132. Fiascaris, M. A Conceptual Solution for a Beam Halo Collimation System for the Future Circular Hadron–Hadron Collider (FCC-hh) / M.Fiascaris, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.96-106. - Bibliogr.:38.

http://dx.doi.org/10.1016/j.nima.2018.03.042

133. Jayamanna, K. A 60 mA DC H- Multi Cusp Ion Source Developed at TRIUMF / K.Jayamanna, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.150-157. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.nima.2018.03.073

134. Krizek, F. Irradiation Setup at the U-120M Cyclotron Facility / F.Krizek, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.87-95. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.nima.2018.03.066

135. Krkotic, P. High-Temperature Superconductor Coating for Coupling Impedance Reduction in the FCC-hh Beam Screen / P.Krkotic, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.56-61. - Bibliogr.:31.

http://dx.doi.org/10.1016/j.nima.2018.03.049

136. Maksimenko, A.V. A Dispersion Equation of the Cylindrical Ideal Wall Vacuum Cavity Sinusoidally Corrugated in Azimuthal Direction. Part II. Investigation of the Dispersion Equation / A.V.Maksimenko, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.38-41. - Bibliogr.:5.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_38.pdf


137. Malina, L. Drive Beam Stabilisation in the CLIC Test Facility 3 / L.Malina, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.25-32. - Bibliogr.:20.

http://dx.doi.org/10.1016/j.nima.2018.03.057

138. Markov, P.I. Comparative Analysis of Acceleration on Test Electron Bunch by Train of Bunches in the Dielectrical Waveguide and Resonator Filled with Plasma / P.I.Markov, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.53-57. - Bibliogr.:8.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_53.pdf


139. Ogren, J. Optimum Resonance Control Knobs for Sextupoles / J.Ogren, V.Ziemann // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.111-118. - Bibliogr.:11.

http://dx.doi.org/10.1016/j.nima.2018.03.041

140. Olsson, T. Pseudo-Single-Bunch Mode for a 100 MHz Storage Ring Serving Soft X-Ray Timing Experiments / T.Olsson, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.145-156. - Bibliogr.:46.

http://dx.doi.org/10.1016/j.nima.2018.03.067

141. Reshetnyak, N.G. High-Voltage Nanosecond Pulse Generator for Magnetron Gun Triggering / N.G.Reshetnyak, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.15-18. - Bibliogr.:2.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_15.pdf


142. Tishkin, S.S. Accelerating Structure with Combined Radio-Frequency Focusing for Acceleration of Heavy A/q 20 to Energy 1 MeV/u / S.S.Tishkin, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.8-11. - Bibliogr.:10.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_8.pdf


143. Vdovin, S.A. Modernization of Injection System of Accelerator MLUD-3 / S.A.Vdovin, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.12-14. - Bibliogr.:4.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_12.pdf


144. Zaleskyi, D.Yu. The Model of Microwave Phase Inverter Controlled by a Neon Plasma Source / D.Yu.Zaleskyi, [et al.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.58-62. - Bibliogr.:12.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_58.pdf


145. Бовда, В.А. Изменение свойств образцов Nd-Fe-B-магнитов при облучении электронным пучком с энергией 23 МэВ / В.А.Бовда, [и др.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – с.163-167. - Библиогр.:15.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_163.pdf

С 345 о - Электронная и ионная оптика. Формирование и анализ пучков

146. Amthor, A.M. Experimental Test of an Online Ion-Optics Optimizer / A.M.Amthor, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.90-99. - Bibliogr.:27.

http://dx.doi.org/10.1016/j.nimb.2018.04.001

147. Arpaia, P. Correcting for Background Fields and Multipole Field Errors in the Localization of the Magnetic Axis in Quadrupole Magnets / P.Arpaia, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.112-119. - Bibliogr.:21.

http://dx.doi.org/10.1016/j.nima.2018.03.060

148. Askarbioki, M. Electron Beams Scanning: A Novel Method / M.Askarbioki, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.81-86. - Bibliogr.:29.

С 346.1 - Нейтрино

149. Ahnen, M.L. Limits on the Flux of Tau Neutrinos from 1 PeV to 3 EeV with the MAGIC Telescopes / M.L.Ahnen, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.77-88. - Bibliogr.:79.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.002

150. Ambrogi, L. On the Potential of Cherenkov Telescope Arrays and KM3 Neutrino Telescopes for the Detection of Extended Sources / L.Ambrogi, [et al.] // Astroparticle Physics. – 2018. – Vol.100. – p.69-79. - Bibliogr.:46.

http://dx.doi.org/10.1016/j.astropartphys.2018.03.001

151. Nakajima, K. Background Studies of High Energy Rays from (n, ) Reactions in the CANDLES Experiment / K.Nakajima, [et al.] // Astroparticle Physics. – 2018. – Vol.100. – p.54-60. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.astropartphys.2018.02.012

152. Richter, S. AGN Neutrino Flux Estimates for a Realistic Hybrid Model / S.Richter, S.Spanier // Astroparticle Physics. – 2018. – Vol.100. – p.61-68. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.astropartphys.2018.02.008

153. Sruthilaya, M. Neutrino Mass and Neutrinoless Double Beta Decay in SO(10) GUT with Pati–Salam Symmetry / M.Sruthilaya, [et al.] // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075004. - Bibliogr.:153.

http://dx.doi.org/10.1088/1361-6471/aac453

154. Sturrock, P.A. Analysis of Gamma Radiation from a Radon Source. II: Indications of Influences of Both Solar and Cosmic Neutrinos on Beta Decays / P.A.Sturrock, [et al.] // Astroparticle Physics. – 2018. – Vol.100. – p.1-12. - Bibliogr.:28.

http://dx.doi.org/10.1016/j.astropartphys.2018.02.003

С 346.6 - Резонансы и новые частицы

155. Chamorro-Solano, S. Lepton Flavor Changing Higgs Boson Decays in a Two Higgs Doublet Model with a Fourth Generation of Fermions / S.Chamorro-Solano, [et al.] // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075003. - Bibliogr.:52.

http://dx.doi.org/10.1088/1361-6471/aac458

156. Chang, Q. Study of B c J/V and B * c c V Decays Within the QCD Factorization / Q.Chang, [et al.] // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075005. - Bibliogr.:78.

http://dx.doi.org/10.1088/1361-6471/aac732

157. Kim, K.W. Measurement of Low-Energy Events Due to 222Rn Daughter Contamination on the Surface of a NaI(Tl) Crystal / K.W.Kim, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.51-55. - Bibliogr.:30.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.004

158. Ma, Y.-L. Chiral Partner Structure of Doubly Heavy Baryons with Heavy Quark Spin-Flavor Symmetry / Y.-L.Ma, M.Harada // Journal of Physics G. – 2018. – Vol.45, No.7. – p.075006. - Bibliogr.:36.

http://dx.doi.org/10.1088/1361-6471/aac86e

С 347 - Космические лучи

159. Das, G.S. A Simulation Study on Few Parameters of Cherenkov Photons in Extensive Air Showers of Different Primaries Incident at Various Zenith Angles Over a High Altitude Observation Level / G.S.Das, [et al.] // Astroparticle Physics. – 2018. – Vol.100. – p.39-53. - Bibliogr.:24.

http://dx.doi.org/10.1016/j.astropartphys.2018.02.013

160. Dembinski, H.P. Computing Mean Logarithmic Mass from Muon Counts in Air Shower Experiments / H.P.Dembinski // Astroparticle Physics. – 2018. – Vol.102. – p.89-94. - Bibliogr.:21.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.008

161. Du, Q. Direct Measurement of Neutrons Induced in Lead by Cosmic Muons at a Shallow Underground Site / Q.Du, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.12-24. - Bibliogr.:40.

http://dx.doi.org/10.1016/j.astropartphys.2018.04.005

162. Heiter, C. Production and Propagation of Ultra-High Energy Photons Using CRPropa 3 / C.Heiter, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.39-50. - Bibliogr.:63.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.003

163. Lopez-Coto, R. Effect of the Diffusion Parameters on the Observed g-Ray Spectrum of Sources and Their Contribution to the Local All-Electron Spectrum: The EDGE Code / R.Lopez-Coto, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.1-11. - Bibliogr.:19.

http://dx.doi.org/10.1016/j.astropartphys.2018.04.003

164. Mukhamedshin, R.A. Analysis of Gamma-Ray Families with Halos and Estimation of Mass Composition of Primary Cosmic Radiation at Energies 1–100 PeV / R.A.Mukhamedshin, [et al.] // Astroparticle Physics. – 2018. – Vol.102. – p.32-38. - Bibliogr.:14.

http://dx.doi.org/10.1016/j.astropartphys.2018.05.005

165. Wincher, T. Energy Spectrum of Fast Second Order Fermi Accelerators as Sources of Ultra-High-Energy Cosmic Rays / T.Wincher, S.Buitink // Astroparticle Physics. – 2018. – Vol.102. – p.25-31. - Bibliogr.:53.

http://dx.doi.org/10.1016/j.astropartphys.2018.04.004

С 349 - Дозиметрия и физика защиты

166. Abuasbi, F. Levels of Extremely Low-Frequency Electric and Magnetic Field from Overhead Power Lines in the Outdoor Environment of Ramallah City-Palestine / F.Abuasbi, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.229-232. - Bibliogr.:21.

https://doi.org/10.1093/rpd/ncx259

167. Abuzaid, M.M. Measurements of Radiation Exposure of Radiography Students During Their Clinical Training Using Thermoluminescent Dosimetry / M.M.Abuzaid, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.244-247. - Bibliogr.:14.

https://doi.org/10.1093/rpd/ncx261

168. Antoni, R. Reduction of the Uncertainty Due to Fissile Clusters in Radioactive Waste Characterization with the Differential Die-Away Technique / R.Antoni, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – p.144-149. - Bibliogr.:14.

http://dx.doi.org/10.1016/j.nima.2018.03.077

169. Silangam, W. Exposure to Extremely Low Frequency Electromagnetic Fields During Lessons in Secondary Schools / W.Silangam, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.248-252. - Bibliogr.:15.

https://doi.org/10.1093/rpd/ncx266

170. Singh, R. Effect of Heating Rate on Thermoluminescence Output of LiF: Mg, Ti (TLD-100) in Dosimetric Applications / R.Singh, H.S.Kainth // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.22-29. - Bibliogr.:42.

http://dx.doi.org/10.1016/j.nimb.2018.04.025

171. Sohrabi, M. Determination of National Diagnostic Reference Levels in Computed Tomography Examinations of Iran by a New Quality Control-Based Dose Survey Method / M.Sohrabi, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.206-215. - Bibliogr.:33.

https://doi.org/10.1093/rpd/ncx252

С 349 д - Биологическое действие излучений

172. Aikawa, M. Activation Cross Sections of Alpha-Induced Reactions on nat In for 117m Sn Production / M.Aikawa, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.18-21. - Bibliogr.:19.

http://dx.doi.org/10.1016/j.nimb.2018.04.023

173. Bartlett, M.L. Diagnostic Nuclear Medicine for Paediatric Patients in Australia: Assessing the Individual’s Dose Burden / M.L.Bartlett, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.216-228. - Bibliogr.:39.

https://doi.org/10.1093/rpd/ncx258

174. Ploussi, A. Direct Measurements of Skin, Eye Lens and Thyroid Dose During Pediatric Brain CT Examinations / A.Ploussi, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.199-205. - Bibliogr.:27.

https://doi.org/10.1093/rpd/ncx251

175. Suleiman, S.A. Monte Carlo Simulation of Out-of-Field Organ Doses and Cancer Risk in Tanzania for Radiation Therapy of Unilateral Retinoblastoma Using a 60Co Unit / S.A.Suleiman, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.263-270. - Bibliogr.:38.

https://doi.org/10.1093/rpd/ncx269

176. Yamazaki, D. Usefulness of Size-Specific Dose Estimates in Pediatric Computed Tomography: Revalidation on Large-Scale Pediatric CT Dose Survey Data in Japan / D.Yamazaki, [et al.] // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.254-262. - Bibliogr.:34.

https://doi.org/10.1093/rpd/ncx268

177. Азизова, Т.В. Оценка риска заболеваемости старческой катарактой в когорте работников предприятия атомной промышленности ПО "Маяк" / Т.В.Азизова, [и др.] // Медицинская радиология и радиационная безопасность. – 2018. – т.63, №4. – с.15-21. - Библиогр.:18.

http://medradiol.ru/vypuski?id=792

178. Никифоров, В.С. Транскрипционная активность генов TP53 и MDM2 в отдаленный период у лиц, подвергшихся хроническому радиационному воздействию / В.С.Никифоров, А.В.Аклеев // Медицинская радиология и радиационная безопасность. – 2018. – т.63, №4. – с.33-39. - Библиогр.:22.

http://medradiol.ru/vypuski?id=794

С 349.1 - Действие излучения на материалы

179. Chen, W.-L. Studies of Cosmic-Ray Muons and Neutrons in a Five-Story Concrete Building / W.-L.Chen, R.-J.Sheu // Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – p.233-243. - Bibliogr.:30.

https://doi.org/10.1093/rpd/ncx260

180. Kucharczyk, P. Computer Simulation of Sputtering Induced by Swift Heavy Ions / P.Kucharczyk, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.5-12. - Bibliogr.:34.

http://dx.doi.org/10.1016/j.nimb.2018.04.022

181. Thomas, P. Electron Irradiation Induced Effects on the Physico-Chemical Properties of L-Arginine Maleate Dihydrate (LAMD) Single Crystals / P.Thomas, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.46-55. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.nimb.2018.04.005

С 350 - Приложения методов ядерной физики в смежных областях

182. Allison, P. Dynamic Tunable Notch Filters for the Antarctic Impulsive Transient Antenna (ANITA) / P.Allison, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.47-56. - Bibliogr.:11.

http://dx.doi.org/10.1016/j.nima.2018.03.059

183. Chang, Y. Investigation of Radiation Hardened SOI Wafer Fabricated by Ion-Cut Technique / Y.Chang, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.1-4. - Bibliogr.:18.

http://dx.doi.org/10.1016/j.nimb.2018.04.021

184. Morita, K. High Resolution Li Depth Profiling of Solid State Li Ion Battery by TERD Technique with High Energy Light Ions / K.Morita, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – p.30-33. - Bibliogr.:10.

http://dx.doi.org/10.1016/j.nimb.2018.04.003

185. Su, T. A Spectral X-Ray CT Simulation Study for Quantitative Determination of Iron / T.Su, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – p.39-46. - Bibliogr.:46.

http://dx.doi.org/10.1016/j.nima.2018.03.043

С 353 - Физика плазмы

186. Ablowitz, M.J. Whitham Modulation Theory for (2  +  1)-Dimensional Equations of Kadomtsev–Petviashvili Type / M.J.Ablowitz, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.21. – p.215501. - Bibliogr.:30.

http://dx.doi.org/10.1088/1751-8121/aabbb3

187. Аникин, А.Ю. Гауссовы пакеты и пучки с фокальными точками в векторных задачах физики плазмы / А.Ю.Аникин, [и др.] // Теоретическая и математическая физика. – 2018. – Т.196, №1. – с.135-160. - Библиогр.:13.

http://mi.mathnet.ru/tmf9520

188. Болотов, О.В. Пространственно-временная структура излучения отрицательной короны в режиме импульсов Тричелла в электродной системе "игла-плоскость" / О.В.Болотов, [и др.] // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – с.101-104. - Библиогр.:8.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_101.pdf

С 37 - Оптика

189. Шварцбург, А.Б. Диэлектрические резонансные магнитные диполи: парадоксы, перспективы, первые эксперименты / А.Б.Шварцбург, [и др.] // Успехи физических наук. – 2018. – Т.188, №7. – с.780-789. - Библиогр.:39.

https://doi.org/10.3367/UFNr.2017.03.038139

С 63 - Астрофизика

190. Munoz, J.B. A Small Amount of Mini-Charged Dark Matter Could Cool the Baryons in the Early Universe / J.B.Munoz, A.Loeb // Nature. – 2018. – Vol.557, No.7707. – p.694-686. - Bibliogr.:30.

http://dx.doi.org/10.1038/s41586-018-0151-x

Ц 732.1 - Квантовомеханические приборы. Молекулярные генераторы и усилители,парамагнитные генераторы и усилители. Лазеры, мазеры и др.Квантовые оптико-электронные приборы. Квантоскопы

191. Макаров, Г.Н. Управление параметрами и составом молекулярных и кластерных пучков с помощью инфракрасных лазеров / Г.Н.Макаров // Успехи физических наук. – 2018. – Т.188, №7. – с.689-719. - Библиогр.:302.

https://doi.org/10.3367/UFNr.2017.10.038269

28.0 - Биология

192. Capozziello, S. The Chern–Simons Current in Time Series of Knots and Links in Proteins / S.Capozziello, R.Pincak // Annals of Physics. – 2018. – Vol.393. – p.413-446. - Bibliogr.:43.

http://dx.doi.org/10.1016/j.aop.2018.04.002

193. Dharmavaram, S. Smectic Viral Capsids and the Aneurysm Instability / S.Dharmavaram, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.204004. - Bibliogr.:26.

http://dx.doi.org/10.1088/1361-648X/aab99a

194. Kotina, E.D. Velocity Field Based Method for Data Processing in Radionuclide Studies / E.D.Kotina, D.A.Ovsyannikov // Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – p.128-131. - Bibliogr.:14.

http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_3/article_2018_3_128.pdf


195. Liu, Y. Pressure Gradients Fail to Predict Diffusio-Osmosis / Y.Liu, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.205002. - Bibliogr.:46.

http://dx.doi.org/10.1088/1361-648X/aabd58

196. Van Der Borg, G. Single-Particle Fusion of Influenza Viruses Reveals Complex Interactions with Target Membranes / G.Van Der Borg, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – p.204005. - Bibliogr.:28.

http://dx.doi.org/10.1088/1361-648X/aabc21


СПИСОК ПРОСМОТРЕННЫХ ЖУРНАЛОВ


1. Annals of Physics. – 2018. – Vol.393. – P.1-484.

2. Astroparticle Physics. – 2018. – Vol.100. – P.1-80.

3. Astroparticle Physics. – 2018. – Vol.102. – P.1-112.

4. Computer Physics Communications. – 2018. – Vol.230. – P.1-218.

5. Europhysics News. – 2018. – Vol.49, No.1. – P.1-32.

6. IEEE Transactions on Nuclear Science. – 2018. – Vol.65, No.7. – P.1331-1432.

7. Journal of Physics A. – 2018. – Vol.51, No.20. – P.203001-205501.

8. Journal of Physics A. – 2018. – Vol.51, No.21. – P.214001-219501.

9. Journal of Physics A. – 2018. – Vol.51, No.22. – P.225001-2252044.

10. Journal of Physics G. – 2018. – Vol.45, No.7. – P.073001-075106.

11. Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.20. – P.203001-205804.

12. Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.23. – P.230301-235805.

13. Nature. – 2018. – Vol.557, No.7707. – P.605-750.

14. Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.894. – P.1-156.

15. Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.895. – P.1-172.

16. Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.426. – P.1-56.

17. Physics Letters A. – 2018. – Vol.382, No.25. – P.1639-1700.

18. Physics Letters A. – 2018. – Vol.382, No.26. – P.1701-1766.

19. Physics Reports. – 2018. – Vol.739. – P.1-52.

20. Radiation Protection Dosimetry. – 2018. – Vol.179, No.3. – P.199-298.

21. Science. – 2018. – Vol.361, No.6397. – P.1-104.

22. Вопросы атомной науки и техники. Сер. Ядерно-физические исследования = Питання атомноi науки i технiки = Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. – 2018. – No.3(115). – С.1-201.

23. Математический сборник. – 2018. – Т.209, №7. – С.1-196.

24. Медицинская радиология и радиационная безопасность. – 2018. – т.63, №4. – С.1-88.

25. Теоретическая и математическая физика. – 2018. – Т.196, №1. – С.1-166.

26. Успехи физических наук. – 2018. – Т.188, №7. – С.689-800.


23