Информационный бюллетень «Статьи» № 38 |
24.09.2018 |
С 133.2 - Уравнения математической физики1. Hossen, M.B. Characteristics of the Solitary Waves and Rogue Waves with Interaction Phenomena in a (2 + 1)-Dimensional Breaking Soliton Equation / M.B.Hossen, [et al.] // Physics Letters A. – 2018. – Vol.382, No.19. – p.1268-1274. - Bibliogr.:34. http://dx.doi.org/10.1016/j.physleta.2018.03.016 2. Reshetikhin, N. Semiclassical Geometry of Integrable Systems / N.Reshetikhin // Journal of Physics A. – 2018. – Vol.51, No.16. – p.164001. - Bibliogr.:24. http://dx.doi.org/10.1088/1751-8121/aaaea6 С 17 - Вычислительная математика. Таблицы3. Sharifzadeh, S. Many-Body Perturbation Theory for Understanding Optical Excitations in Organic Molecules and Solids / S.Sharifzadeh // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.153002. - Bibliogr.:129. http://dx.doi.org/10.1088/1361-648X/aab0d1 С 3 - Физика4. Ferdinand Hahn 1959–2018 // CERN Courier. – 2018. – Vol.58, No.5. – p.40. https://cerncourier.com/obituaries-91/ 5. Breidenbach, M. Richard Taylor 1929–2018 / M.Breidenbach, C.Prescott // CERN Courier. – 2018. – Vol.58, No.5. – p.41-42. https://cerncourier.com/obituaries-91/ 6. Kaiser, D. The Origins of Physics Today / D.Kaiser // Physics Today. – 2018. – Vol.71, No.5. – p.32-38. - Bibliogr.:14. https://doi.org/10.1063/PT.3.3920 7. Lyons, L. The History and Future of the PHYSTAT Series / L.Lyons // CERN Courier. – 2018. – Vol.58, No.5. – p.37. https://cerncourier.com/faces-and-places-138/ 8. Mardor, I. The Soreq Applied Research Accelerator Facility (SARAF): Overview, Research Programs and Future Plans / I.Mardor, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.91. - Bibliogr.:236. http://dx.doi.org/10.1140/epja/i2018-12526-2 9. Martin, A. Renaming the Pauli Principle / A.Martin // CERN Courier. – 2018. – Vol.58, No.5. – p.39. https://cerncourier.com/letter-renaming-the-pauli-principle/ 10. Rees, M. Stephen Hawking (1942–2018) / M.Rees // Nature. – 2018. – Vol.555, No.7697. – p.444. http://dx.doi.org/10.1038/d41586-018-02839-9 С 322 - Теория относительности11. Bhandari, P. Thermodynamics of the Dissipative Cosmic Fluid and Stability Criteria / P.Bhandari, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.78. - Bibliogr.:33. http://dx.doi.org/10.1140/epja/i2018-12511-9 12. Coppi, B. High Energy Radiation Precursors to the Collapse of Black Holes Binaries Based on Resonating Plasma Modes / B.Coppi // Physics Letters A. – 2018. – Vol.382, No.19. – p.1283-1286. - Bibliogr.:8. http://dx.doi.org/10.1016/j.physleta.2018.03.024 13. Miller, T.B. A Massive Core for a Cluster of Galaxies at a Redshift of 4.3 / T.B.Miller, [et al.] // Nature. – 2018. – Vol.556, No.7702. – p.469-472. - Bibliogr.:26. http://dx.doi.org/10.1038/s41586-018-0025-2 14. Арбузова, Е.В. Проблемы гравитационного бариосинтеза / Е.В.Арбузова // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – с.308-315. - Библиогр.:6. http://www1.jinr.ru/Pepan_letters/panl_2018_4/02_Arbuzova.pdf 15. Новиков, О.О. Неоднородные моды в PT-симметричной квантовой космологии / О.О.Новиков // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – с.316-322. - Библиогр.:18. http://www1.jinr.ru/Pepan_letters/panl_2018_4/03_Novikov.pdf С 323 - Квантовая механика16. Grabowski, J. Geometry of Quantum Dynamics in Infinite-Dimensional Hilbert Space / J.Grabowski, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.16. – p.165301. - Bibliogr.:45. http://dx.doi.org/10.1088/1751-8121/aab289 17. Neill, C. A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits / C.Neill, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.195-199. - Bibliogr.:24. http://dx.doi.org/10.1126/science.aao4309 18. Ockeloen-Korppi, C.F. Stabilized Entanglement of Massive Mechanical Oscillators / C.F.Ockeloen-Korppi, [et al.] // Nature. – 2018. – Vol.556, No.7702. – p.478-482. - Bibliogr.:31. http://dx.doi.org/10.1038/s41586-018-0038-x 19. Riedinger, R. Remote Quantum Entanglement between Two Micromechanical Oscillators / R.Riedinger, [et al.] // Nature. – 2018. – Vol.556, No.7702. – p.473-477. - Bibliogr.:33. http://dx.doi.org/10.1038/s41586-018-0036-z 20. Wang, J. Multidimensional Quantum Entanglement with Large-Scale Integrated Optics / J.Wang, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.285-291. - Bibliogr.:47. http://dx.doi.org/10.1126/science.aar7053 С 323.1 - Релятивистские волновые уравнения. Уравнения типа Бете-Солпитера. Квазипотенциал21. Бондаренко, С.Г. Сепарабельное ядро взаимодействия первого ранга для нуклонов со скалярными пропагаторами / С.Г.Бондаренко, В.В.Буров, С.А.Юрьев // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – с.355-361. - Библиогр.:9. http://www1.jinr.ru/Pepan_letters/panl_2018_4/17_bondaren.pdf С 323.5 - Теория взаимодействия частиц при высоких энергиях22. Dorkin, S.M. Solving the Dyson-Schwinger Equation at Zero and Finite Temperatures : [Abstract] / S.M.Dorkin, L.P.Kaptari, B.B.Kampfer // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.354. http://www1.jinr.ru/Pepan_letters/panl_2018_4/16_Dorkin_ann.pdf 23. Fogaca, D.A. Waves in Magnetized Quark Matter / D.A.Fogaca, [et al.] // Nuclear Physics A. – 2018. – Vol.973. – p.48-59. - Bibliogr.:28. http://dx.doi.org/10.1016/j.nuclphysa.2018.02.009 С 324.1 - Вторично- квантованные локальные теории взаимодействующих полей24. Marboe, C. The Full Spectrum of AdS5/CFT4 I: Representation Theory and One-Loop Q-System / C.Marboe, D.Volin // Journal of Physics A. – 2018. – Vol.51, No.16. – p.154401. - Bibliogr.:62. http://dx.doi.org/10.1088/1751-8121/aab34a С 324.1а - Квантовая электродинамика. Эксперименты по проверке КЭД при высоких и низких энергиях25. Zalialiutdinov, T.A. QED Theory of Multiphoton Transitions in Atoms and Ions / T.A.Zalialiutdinov, [et al.] // Physics Reports. – 2018. – Vol.737. – p.1-84. - Bibliogr.:176. http://dx.doi.org/10.1016/j.physrep.2018.02.003 С 324.1б - Сильные взаимодействия. Электромагнитная структура частиц. Алгебра токов. Киральные теории. Теория Редже26. Dong, Y. On the Decay of d * (2380) in the Constituent Chiral Quark Model : [Abstract] / Y.Dong, [et al.] // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – c.351. http://www1.jinr.ru/Pepan_letters/panl_2018_4/13_dong_ann.pdf 27. Gelenava, M. Electromagnetic Transition Form Factors of the Roper Resonance in Baryon Chiral Perturbation Theory / M.Gelenava // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.88. - Bibliogr.:44. http://dx.doi.org/10.1140/epja/i2018-12523-5 С 324.1в - Слабые взаимодействия. Теория Вайнберга- Салама и ее модификации28. Parker, R.H. Measurement of the Fine-Structure Constant as a Test of the Standard Model / R.H.Parker, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.191-195. - Bibliogr.:29. http://dx.doi.org/10.1126/science.aap7706 С 324.1д - Квантовая хромодинамика29. Goharipour, M. Study of the s – s Asymmetry in the Proton / M.Goharipour // Nuclear Physics A. – 2018. – Vol.973. – p.60-78. - Bibliogr.:102. http://dx.doi.org/10.1016/j.nuclphysa.2018.02.005 30. Ilgenfritz, E.-M. Transversal and Longitudinal Gluon Spectral Functions from Twisted Mass Lattice QCD with N f =2+1+1 Flavors : [Abstract] / E.-M.Ilgenfritz, J.M.Pawlowski, A.Rothkopf, A.M.Trunin // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.331. http://www1.jinr.ru/Pepan_letters/panl_2018_4/05_ilgenfritz_ann.pdf 31. Issadykov, A. b-s Anomaly Decays in Covariant Quark Model : [Abstract] / A.Issadykov, M.A.Ivanov // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.350. http://www1.jinr.ru/Pepan_letters/panl_2018_4/12_issadykov_ann.pdf 32. Kim, V.T. QCD Evolution of Nuclear Structure Functions at Large x: EMC Effect and Cumulative Processes : [Abstract] / V.T.Kim // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – c.348. http://www1.jinr.ru/Pepan_letters/panl_2018_4/10_kim-1_ann.pdf 33. Zhang, B. Gluonic Distribution in the Constituent Quark and Nucleon Induced by the Instantons : [Abstract] / B.Zhang, N.Kochelev, H.-J.Lee, P.Zhang // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.333. http://www1.jinr.ru/Pepan_letters/panl_2018_4/07_zhang_ann.pdf 34. Андрианов, А.А. КХД с киральным химическим вектором: модели и решетки в сравнении / А.А.Андрианов, [и др.] // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – с.323-330. - Библиогр.:14. http://www1.jinr.ru/Pepan_letters/panl_2018_4/04_andrian.pdf С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки35. Appleby, M. Constructing Exact Symmetric Informationally Complete Measurements from Numerical Solutions / M.Appleby, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.16. – p.165302. - Bibliogr.:37. http://dx.doi.org/10.1088/1751-8121/aab4cd 36. Persson, D. Dualities in CHL-Models / D.Persson, R.Volpato // Journal of Physics A. – 2018. – Vol.51, No.16. – p.164002. - Bibliogr.:32. http://dx.doi.org/10.1088/1751-8121/aab489 37. Кудрявцев, В.А. Мезоны в NN - канале в модели составной суперконформной струны / В.А.Кудрявцев, А.Н.Семенова // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – с.362-367. - Библиогр.:3. http://www1.jinr.ru/Pepan_letters/panl_2018_4/18_kudryav.pdf С 325 - Статистическая физика и термодинамика38. Zukovic, M. Thermodynamic and Critical Properties of an Antiferromagnetically Stacked Triangular Ising Antiferromagnet in a Field / M.Zukovic, [et al.] // Physics Letters A. – 2018. – Vol.382, No.19. – p.1305-1311. - Bibliogr.:34. http://dx.doi.org/10.1016/j.physleta.2018.03.026 С 325.1 - Точно решаемые и решеточные модели39. Astaraki, M. Investigation of Phase Diagrams for Cylindrical Ising Nanotube Using Cellular Automata / M.Astaraki, [et al.] // Physics Letters A. – 2018. – Vol.382, No.19. – p.1291-1297. - Bibliogr.:37. http://dx.doi.org/10.1016/j.physleta.2018.03.014 40. Dias, C. Calibrating Cellular Automaton Models for Pedestrians Walking Through Corners / C.Dias, R.Lovreglio // Physics Letters A. – 2018. – Vol.382, No.19. – p.1255-1261. - Bibliogr.:49. http://dx.doi.org/10.1016/j.physleta.2018.03.022 41. Liu, Z. Analysis, Calculation and Utilization of the k-Balance Attribute in Interdependent Networks / Z.Liu, [et al.] // Physics Letters A. – 2018. – Vol.382, No.19. – p.1275-1282. - Bibliogr.:30. http://dx.doi.org/10.1016/j.physleta.2018.03.023 42. Oitmaa, J. Diamond Lattice Heisenberg Antiferromagnet / J.Oitmaa // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155801. - Bibliogr.:8. http://dx.doi.org/10.1088/1361-648X/aab22c 43. Yuksel, Y. Exchange Bias Mechanism in FM/FM/AF Spin Valve Systems in the Presence of Random Unidirectional Anisotropy Field at the AF Interface: The Role Played by the Interface Roughness Due to Randomness / Y.Yuksel // Physics Letters A. – 2018. – Vol.382, No.19. – p.1298-1304. - Bibliogr.:40. http://dx.doi.org/10.1016/j.physleta.2018.03.009 С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы44. Rosas, A. Pulse Propagation in Granular Chains / A.Rosas, K.Lindenberg // Physics Reports. – 2018. – Vol.735. – p.1-37. - Bibliogr.:130. http://dx.doi.org/10.1016/j.physrep.2018.02.001 С 325.4а - Математическая экономика. Экономическая физика45. Barbosa, H. Human Mobility: Models and Applications / H.Barbosa, [et al.] // Physics Reports. – 2018. – Vol.734. – p.1-74. - Bibliogr.:422. http://dx.doi.org/10.1016/j.physrep.2018.01.001 С 325.8 - Квантовые объекты низкой размерности (за исключением эффектов Холла)46. Aligia, A.A. Leading Temperature Dependence of the Conductance in Kondo-Correlated Quantum Dots / A.A.Aligia // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155304. - Bibliogr.:58. http://dx.doi.org/10.1088/1361-648X/aab45b 47. Barati, M. Phononic Thermal Conductivity in Silicene: the Role of Vacancy Defects and Boundary Scattering / M.Barati, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155307. - Bibliogr.:59. http://dx.doi.org/10.1088/1361-648X/aab422 48. Chen, X.-K. Anisotropic Thermal Conductivity in Carbon Honeycomb / X.-K.Chen, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155702. - Bibliogr.:75. http://dx.doi.org/10.1088/1361-648X/aab38d 49. Cosic, M. The Forward Rainbow Scattering of Low Energy Protons by a Graphene Sheet / M.Cosic, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.54-62. - Bibliogr.:64. http://dx.doi.org/10.1016/j.nimb.2018.02.028 50. Grandgeorge, P. Capillarity-Induced Folds Fuel Extreme Shape Changes in Thin Wicked Membranes / P.Grandgeorge, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.296-299. - Bibliogr.:23. http://dx.doi.org/10.1126/science.aaq0677 51. Gruner, C. Gold Coated Metal Nanostructures Grown by Glancing Angle Deposition and Pulsed Electroplating / C.Gruner, [et al.] // Physics Letters A. – 2018. – Vol.382, No.19. – p.1287-1290. - Bibliogr.:11. http://dx.doi.org/10.1016/j.physleta.2018.03.010 52. Moreno, C. Bottom-Up Synthesis of Multifunctional Nanoporous Graphene / C.Moreno, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.199-203. - Bibliogr.:37. http://dx.doi.org/10.1126/science.aar2009
53. Schwestka, J. The Role of Radiative De-Excitation in the Neutralization Process of Highly Charged Ions Interacting with a Single Layer of Graphene / J.Schwestka, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.63-67. - Bibliogr.:27. http://dx.doi.org/10.1016/j.nimb.2018.02.022 54. Servalli, M. Synthesizing Molecular Fishing Nets / M.Servalli, [et al.] // Physics Today. – 2018. – Vol.71, No.5. – p.40-47. - Bibliogr.:18. https://doi.org/10.1063/PT.3.3921 С 326 - Квантовая теория систем из многих частиц. Квантовая статистика55. Chryssomalakos, C. Geometry of Spin Coherent States / C.Chryssomalakos, [et al.] // Journal of Physics A. – 2018. – Vol.51, No.16. – p.165202. - Bibliogr.:51. http://dx.doi.org/10.1088/1751-8121/aab349 56. Iranzo, D.A. Probing the Ultimate Plasmon Confinement Limits with a Van Der Waals Heterostructure / D.A.Iranzo, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.291-295. - Bibliogr.:32. http://dx.doi.org/10.1126/science.aar8438 57. Kurt, A. Dynamics of a Spin-Boson Model with Structured Spectral Density / A.Kurt, R.Eryigit // Physics Letters A. – 2018. – Vol.382, No.19. – p.1262-1267. - Bibliogr.:31. http://dx.doi.org/10.1016/j.physleta.2018.03.021 58. Rauer, B. Recurrences in an Isolated Quantum Many-Body System / B.Rauer, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.307-310. - Bibliogr.:32. http://dx.doi.org/10.1126/science.aan7938 59. Samkharadze, N. Strong Spin-Photon Coupling in Silicon / N.Samkharadze, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1123-1127. - Bibliogr.:34. http://dx.doi.org/10.1126/science.aar4054 60. Strinati, G.C. The BCS–BEC Crossover: From Ultra-Cold Fermi Gases to Nuclear Systems / G.C.Strinati, [et al.] // Physics Reports. – 2018. – Vol.738. – p.1-76. - Bibliogr.:498. http://dx.doi.org/10.1016/j.physrep.2018.02.004 61. Xu, L.-L. Spin–Orbit Coupling Induced Three-Dimensional Topological Objects in Attractive Bose–Einstein Condensates / L.-L.Xu, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155402. - Bibliogr.:45. http://dx.doi.org/10.1088/1361-648X/aab55e С 33 а - Нанофизика. Нанотехнология62. Abdi-Jalebi, M. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation / M.Abdi-Jalebi, [et al.] // Nature. – 2018. – Vol.555, No.7697. – p.497-501. - Bibliogr.:31. http://dx.doi.org/10.1038/nature25989
63. Ellaby, T. Ideal Versus Real: Simulated Annealing of Experimentally Derived and Geometric Platinum Nanoparticles / T.Ellaby, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155301. - Bibliogr.:40. http://dx.doi.org/10.1088/1361-648X/aab251 64. Jalil, A. Magnetic and Electronic Properties of Single-Walled Mo 2 C Nanotube: a First-Principles Study / A.Jalil, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155305. - Bibliogr.:55. http://dx.doi.org/10.1088/1361-648X/aab397 65. Lee, H.-E. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles / H.-E.Lee, [et al.] // Nature. – 2018. – Vol.556, No.7701. – p.360-365. - Bibliogr.:33. http://dx.doi.org/10.1038/s41586-018-0034-1 66. Liu, J. Graphene-Like Monolayer InSe-X: Several Promising Half-Metallic Nanosheets in Spintronics / J.Liu, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155306. - Bibliogr.:43. http://dx.doi.org10.1088/1361-648X/aab4db 67. Liu, X. Pressure-Jump Induced Rapid Solidification of Melt: a Method of Preparing Amorphous Materials / X.Liu, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.154001. - Bibliogr.:29. http://dx.doi.org/10.1088/1361-648X/aab40b 68. Wu, H.-Z. Exploring the Formation and Electronic Structure Properties of the g-C 3 N 4 Nanoribbon with Density Functional Theory / H.-Z.Wu, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155303. - Bibliogr.:53. http://dx.doi.org/10.1088/1361-648X/aab2ca 69. Xie, S. Coherent, Atomically Thin Transition-Metal Dichalcogenide Superlattices with Engineered Strain / S.Xie, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1131-1136. - Bibliogr.:38. http://dx.doi.org/10.1126/science.aao5360 70. Zhou, J. A Library of Atomically Thin Metal Chalcogenides / J.Zhou, [et al.] // Nature. – 2018. – Vol.556, No.7701. – p.355-359. - Bibliogr.:33. http://dx.doi.org/10.1038/s41586-018-0008-3 С 332 - Электромагнитные взаимодействия71. Cusanovich, D.A. The Cis-Regulatory Dynamics of Embryonic Development at Single-Cell Resolution / D.A.Cusanovich, [et al.] // Nature. – 2018. – Vol.555, No.7697. – p.538-542. - Bibliogr.:32. http://dx.doi.org/10.1038/nature25981 72. Fares, H. Quantum-Mechanical Analysis of Low-Gain Free-Electron Laser Oscillators / H.Fares, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.47-56. - Bibliogr.:30. http://dx.doi.org/10.1016/j.nima.2018.01.076 73. Jones, R.O. Bonding in Phase Change Materials: Concepts and Misconceptions / R.O.Jones // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.153001. - Bibliogr.:231. http://dx.doi.org/10.1088/1361-648X/aab22e 74. Zou, D. Self-Repeating Properties of Four-Petal Gaussian Vortex Beams in Quadratic Index Medium / D.Zou, [et al.] // Physics Letters A. – 2018. – Vol.382, No.19. – p.1312-1316. - Bibliogr.:27. http://dx.doi.org/10.1016/j.physleta.2018.03.005 С 341 - Атомные ядра75. Tudora, A. Revisiting the Residual Temperature Distribution in Prompt Neutron Emission in Fission / A.Tudora, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.87. - Bibliogr.:37. http://dx.doi.org/10.1140/epja/i2018-12521-7 76. Yakhshiev, U.T. Nucleons in Nuclear Matter and Properties of Nuclei : [Abstract] / U.T.Yakhshiev // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – c.369. http://www1.jinr.ru/Pepan_letters/panl_2018_4/20_Yakhshiev_ann.pdf С 341 а - Различные модели ядер77. Fortune, H.T. Matter Radii and Configuration Mixing in 15-19 C / H.T.Fortune // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.73. - Bibliogr.:28. http://dx.doi.org/10.1140/epja/i2018-12506-6 78. Keeley, N. A Cautionary Tale: The Coulomb Modified ANC for the 1/2+ 2 State in 17O / N.Keeley, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.71. - Bibliogr.:12. http://dx.doi.org/10.1140/epja/i2018-12507-5 79. Lawriniang, B. Measurement of Cross-Sections for the 93Nb(p, n) 93m Mo and 93Nb(p,pn) 92m Nb Reactions up to ~ 20 MeV Energy / B.Lawriniang, [et al.] // Nuclear Physics A. – 2018. – Vol.973. – p.79-88. - Bibliogr.:26. http://dx.doi.org/10.1016/j.nuclphysa.2018.02.008 80. Reinert, P. Semilocal Momentum-Space Regularized Chiral Two-Nucleon Potentials Up to Fifth Order / P.Reinert, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.86. - Bibliogr.:149. http://dx.doi.org/10.1140/epja/i2018-12516-4 81. Rossa, V.D. Cluster Shell Model: I. Structure of 9Be, 9B / V.D.Rossa, F.Iachello // Nuclear Physics A. – 2018. – Vol.973. – p.1-32. - Bibliogr.:67. http://dx.doi.org/10.1016/j.nuclphysa.2018.02.003 82. Schiller, M. Isotopic Evolution of the Protoplanetary Disk and the Building Blocks of Earth and the Moon / M.Schiller, [et al.] // Nature. – 2018. – Vol.555, No.7697. – p.507-510. - Bibliogr.:33. http://dx.doi.org/10.1038/nature25990
83. Sobhani, H. Investigation of Bohr Hamiltonian in Presence of Killingbeck Potential Using Bi-Confluent Heun Functions / H.Sobhani, [et al.] // Nuclear Physics A. – 2018. – Vol.973. – p.33-47. - Bibliogr.:38. http://dx.doi.org/10.1016/j.nuclphysa.2018.02.007 84. Varlamov, V.V. The Reliability of Photoneutron Cross Sections for 90,91,92,94 Zr / V.V.Varlamov, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.74. - Bibliogr.:26. http://dx.doi.org/10.1140/epja/i2018-12508-4 С 341.1 - Радиоактивность85. Lim, Ye. Nuclear Energy Density Functional and the Nuclear -Decay : [Abstract] / Ye.Lim, Yo.Oh // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.368. http://www1.jinr.ru/Pepan_letters/panl_2018_4/19_Lim_ann.pdf 86. Pattavina, L. An Innovative Technique for the Investigation of the 4-Fold Forbidden Beta-Decay of 50V / L.Pattavina, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.79. - Bibliogr.:37. http://dx.doi.org/10.1140/epja/i2018-12515-5 С 341.1ж - Источники радиоактивных излучений. Источники нейтронов87. Lagomarsino, S. The Center for Production of Single-Photon Emitters at the Electrostatic-Deflector Line of the Tandem Accelerator of LABEC (Florence) / S.Lagomarsino, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.31-40. - Bibliogr.:65. http://dx.doi.org/10.1016/j.nimb.2018.02.020 С 341.2 - Свойства атомных ядер88. Rai, S. High Spin States in 63Cu / S.Rai, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.84. - Bibliogr.:60. http://dx.doi.org/10.1140/epja/i2018-12518-2 89. Thielking, J. Laser Spectroscopic Characterization of the Nuclear-Clock Isomer 229m Th / J.Thielking, [et al.] // Nature. – 2018. – Vol.556, No.7701. – p.321-325. - Bibliogr.:41. http://dx.doi.org/10.1038/s41586-018-0011-8 90. Xu, Q. Investigation of High Spin States in 133Cs / Q.Xu, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.83. - Bibliogr.:39. http://dx.doi.org/10.1140/epja/i2018-12520-8 С 342 - Прохождение частиц и гамма-квантов через вещество91. Miskovic, Z.L. Relativistic Effects in the Energy Loss of a Fast Charged Particle Moving Parallel to a Two-Dimensional Electron Gas / Z.L.Miskovic, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.18-23. - Bibliogr.:25. http://dx.doi.org/10.1016/j.nimb.2018.02.025 С 343 - Ядерные реакции92. Beyer, R. The Neutron Transmission of nat Fe, 197Au and nat W / R.Beyer, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.81. - Bibliogr.:44. http://dx.doi.org/10.1140/epja/i2018-12505-7 93. Higa, R. Radiative 3He(, )7Be Reaction in Halo Effective Field Theory / R.Higa, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.89. - Bibliogr.:46. http://dx.doi.org/10.1140/epja/i2018-12486-5 94. Santhosh, K.P. Theoretical Studies on the Synthesis of SHE 290-302 Og (Z = 118) Using 48Ca, 45Sc, 50Ti, 51V, 54Cr, 55Mn, 58Fe, 59Co and 64Ni Induced Reactions / K.P.Santhosh, V.Safoora // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.80. - Bibliogr.:53. http://dx.doi.org/10.1140/epja/i2018-12512-8 С 343 е - Ядерные реакции с тяжелыми ионами95. Adamczewski-Musch, J. Centrality Determination of Au+Au Collisions at 1.23A GeV with HADES / J.Adamczewski-Musch, A.Belyaev, S.Chernenko, O.Fateev, A.Ierusalimov, A.Kurilkin, P.Kurilkin, V.Ladygin, Y.Zanevsky, [a.o.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.85. - Bibliogr.:19. http://dx.doi.org/10.1140/epja/i2018-12513-7 96. Kaur, K. On the Study of Rotational Effects in Mass Asymmetric Colliding Nuclei at Intermediate Energies / K.Kaur, S.Kumar // Nuclear Physics A. – 2018. – Vol.973. – p.149-163. - Bibliogr.:35. http://dx.doi.org/10.1016/j.nuclphysa.2018.03.003 С 344.1 - Методы и аппаратура для регистрации элементарных частиц и фотонов97. Three-Body Fragmentation in a New Frame // Physics Today. – 2018. – Vol.71, No.5. – p.24. https://doi.org/10.1063/PT.3.3917 98. Danevich, F.A. Growth and Characterization of a Li 2 Mg 2 (MoO 4 ) 3 Scintillating Bolometer / F.A.Danevich, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.89-96. - Bibliogr.:55. http://dx.doi.org/10.1016/j.nima.2018.01.101 99. Du, Q. Measurement of the Fast Neutron Background at the China Jinping Underground Laboratory / Q.Du, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.105-112. - Bibliogr.:30. http://dx.doi.org/10.1016/j.nima.2018.01.098 100. Fu, W. A Geant4 Evaluation of the Hornyak Button and Two Candidate Detectors for the TREAT Hodoscope / W.Fu, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.39-46. - Bibliogr.:18. http://dx.doi.org/10.1016/j.nima.2018.01.092
101. Hursin, M. Testing of a sCVD Diamond Detection System in the CROCUS Reactor / M.Hursin, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.82. - Bibliogr.:19. http://dx.doi.org/10.1140/epja/i2018-12519-1 102. Kaptanoglu, T. Characterization of the Hamamatsu 8” R5912-MOD Photomultiplier Tube / T.Kaptanoglu // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.69-77. - Bibliogr.:20. http://dx.doi.org/10.1016/j.nima.2018.01.086 103. Mackel, V. Imaging Antimatter with a Micromegas Detector / V.Mackel, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.1-6. - Bibliogr.:24. http://dx.doi.org/10.1016/j.nimb.2018.02.026 104. Mazzone, A. GEANT4 Simulations of a Novel 3He-Free Thermalization Neutron Detector / A.Mazzone, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.33-38. - Bibliogr.:20. http://dx.doi.org/10.1016/j.nimb.2018.02.011 105. Metwally, W.A. Experimental Validation and Testing of a NaI Boron-Lined Neutron Detector / W.A.Metwally, A.G.Emam // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.7-11. - Bibliogr.:13. http://dx.doi.org/10.1016/j.nimb.2018.02.021 106. Misicu, S. Fraunhofer and Refractive Scattering of Heavy Ions in Strong Laser Fields / S.Misicu, F.Carstoiu // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.90. - Bibliogr.:34. http://dx.doi.org/10.1140/epja/i2018-12525-3 107. Pagano, E.V. Pulse Shape Discrimination of Plastic Scintillator EJ 299-33 with Radioactive Sources / E.V.Pagano, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.83-88. - Bibliogr.:34. http://dx.doi.org/10.1016/j.nima.2018.02.010 108. Radics, B. Matching Problem for Primary and Secondary Signals in Dual-Phase TPC Detectors / B.Radics, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.16-21. - Bibliogr.:12. http://dx.doi.org/10.1016/j.nimb.2018.02.022 109. Rouijaa, M. Beam Modulation: A Novel ToF-Technique for High Resolution Diffraction at the Beamline for European Materials Engineering Research (BEER) / M.Rouijaa, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.7-15. - Bibliogr.:15. http://dx.doi.org/10.1016/j.nima.2017.12.083 110. Shukla, M. Development of Neutron Imaging Beamline for NDT Applications at Dhruva Reactor, India / M.Shukla, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.63-68. - Bibliogr.:19. http://dx.doi.org/10.1016/j.nima.2018.01.097 111. Tan, Z. Energy-Resolved Fast Neutron Resonance Radiography at CSNS / Z.Tan, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.122-128. - Bibliogr.:30. http://dx.doi.org/10.1016/j.nima.2018.01.099 112. Zaitseva, N.P. Recent Developments in Plastic Scintillators with Pulse Shape Discrimination / N.P.Zaitseva, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.97-104. - Bibliogr.:23. http://dx.doi.org/10.1016/j.nima.2018.01.093 113. Zhang, Z. A High-Gain, Low Ion-Backflow Double Micro-Mesh Gaseous Structure for Single Electron Detection / Z.Zhang, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.78-82. - Bibliogr.:15. http://dx.doi.org/10.1016/j.nima.2018.02.006 С 344.3 - Ядерная электроника114. Samson, A. A Fully Automated and Scalable Timing Probe-Based Method for Time Alignment of the LabPET II Scanners / A.Samson, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.1-6. - Bibliogr.:19. http://dx.doi.org/10.1016/j.nima.2018.01.049 С 344.4а - Методы приготовления мишеней115. Maugeri, E.A. Preparation and Characterization of Three 7Be Targets for the Measurement of the 7Be(n, p)7Li and 7Be(n, )7Li Reaction Cross Sections / E.A.Maugeri, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.138-144. - Bibliogr.:38. http://dx.doi.org/10.1016/j.nima.2018.01.078 С 344.4б - Методы приготовления тонких пленок116. Alexander-Webber, J.A. Multi-Band Magnetotransport in Exfoliated Thin Films of Cu x Bi 2 Se 3 / J.A.Alexander-Webber, [et al.] // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155302. - Bibliogr.:43. http://dx.doi.org/10.1088/1361-648X/aab193 С 345 - Ускорители заряженных частиц117. Chiggiato, P. CERN’s Prowess in Nothingness / P.Chiggiato // CERN Courier. – 2018. – Vol.58, No.5. – p.26-30. https://cerncourier.com/cerns-prowess-in-nothingness/ 118. Gao, J. China’s Bid for a Circular Electron–Positron Collider / J.Gao // CERN Courier. – 2018. – Vol.58, No.5. – p.21-25. - Bibliogr.:9. https://cerncourier.com/chinas-bid-for-a-circular-electron-positron-collider/ 119. Lal, S. An Algorithm for the Design and Tuning of RF Accelerating Structures with Variable Cell Lengths / S.Lal, K.K.Pant // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.57-62. - Bibliogr.:20. http://dx.doi.org/10.1016/j.nima.2018.01.077
120. Strokovsky, E.A. Recent Progress in Experiments with Relativistic Ions at the Nuclotron : [Abstract] / E.A.Strokovsky // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.372. http://www1.jinr.ru/Pepan_letters/panl_2018_4/23_Strokovsky_ann.pdf 121. Zimmermann, F. CERN Thinks Bigger / F.Zimmermann, M.Benedikt // CERN Courier. – 2018. – Vol.58, No.5. – p.15-19. - Bibliogr.:8. https://cerncourier.com/cern-thinks-bigger/ С 345 о - Электронная и ионная оптика. Формирование и анализ пучков122. Chen, Y. Modeling and Simulation of RF Photoinjectors for Coherent Light Sources / Y.Chen, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.129-137. - Bibliogr.:46. http://dx.doi.org/10.1016/j.nima.2018.02.017 123. Findlay, D.J.S. Two-Dimensional Beam Profiles and One-Dimensional Projections / D.J.S.Findlay, [et al.] // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.113-117. - Bibliogr.:5. http://dx.doi.org/10.1016/j.nima.2018.02.029 124. Kedia, S.K. Design and Development of a Chopping and Deflecting System for the High Current Injector at IUAC / S.K.Kedia, R.Mehta // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.22-32. - Bibliogr.:24. http://dx.doi.org/10.1016/j.nima.2018.01.075 С 346 - Элементарные частицы125. Cappuzzello, F. The NUMEN Project: NUclear Matrix Elements for Neutrinoless Double Beta Decay / F.Cappuzzello, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.72. - Bibliogr.:224. http://dx.doi.org/10.1140/epja/i2018-12509-3 С 346.2 - Нуклоны и антинуклоны126. Ozvenchuk, V. Transverse Momentum Spectra of Hadrons in p + p Collisions at CERN SPS Energies from the UrQMD Transport Model / V.Ozvenchuk, A.Rybicki // Nuclear Physics A. – 2018. – Vol.973. – p.104-115. - Bibliogr.:25. http://dx.doi.org/10.1016/j.nuclphysa.2018.03.002 С 346.4 - Пи-мезоны127. Kolomeitsev, E.E. Fluctuations in Non-Ideal Pion Gas with Dynamically Fixed Particle Number / E.E.Kolomeitsev, D.N.Voskresensky // Nuclear Physics A. – 2018. – Vol.973. – p.89-103. - Bibliogr.:52. http://dx.doi.org/10.1016/j.nuclphysa.2018.02.010 С 346.5 - К-мезоны и гипероны128. Kim, S.H. Decay Angular Distributions of K * and D * Mesons as a Tool for the Dynamics of Open Strange and Charm Production : [Abstract] / S.H.Kim, Yo.Oh, A.I.Titov // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – p.353. http://www1.jinr.ru/Pepan_letters/panl_2018_4/15_Kim_ann.pdf С 349 - Дозиметрия и физика защиты129. Kalita, J.M. Thermoluminescence of -Al 2 O 3 :C,Mg Annealed at 1200 o C / J.M.Kalita, M.L.Chithambo // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.78-84. - Bibliogr.:19. http://dx.doi.org/10.1016/j.nimb.2018.03.003 130. Kong, X. Effects of Recording Time and Residue on Dose-Response by LiMgPO 4 : Tb, B Ceramic Disc Synthesized Via Improved Sintering Process / X.Kong, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.12-17. - Bibliogr.:17. http://dx.doi.org/10.1016/j.nimb.2018.02.032 С 349.1 - Действие излучения на материалы131. Bhowmik, D. Physicochemical Variation of Mica Surface by Low Energy Ion Beam Irradiation / D.Bhowmik, P.Karmakar // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.41-46. - Bibliogr.:41. http://dx.doi.org/10.1016/j.nimb.2018.02.030 132. Cutshall, D.B. Tracking Ion Irradiation Effects Using Buried Interface Devices / D.B.Cutshall, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.47-49. - Bibliogr.:17. http://dx.doi.org/10.1016/j.nimb.2018.02.014 133. Vujcic, I. Gamma-Radiation Effects on Luminescence Properties of Eu3+ Activated LaPO 4 Phosphor / I.Vujcic, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.85-90. - Bibliogr.:43. http://dx.doi.org/10.1016/j.nimb.2018.03.002 134. Yang, Y. Dose Dependence of Nano-Hardness of 6H-SiC Crystal Under Irradiation with Inert Gas Ions / Y.Yang, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.50-53. - Bibliogr.:37. http://dx.doi.org/10.1016/j.nimb.2018.02.035 С 350 - Приложения методов ядерной физики в смежных областях135. Pereira, M.A.S. Penetration of the Consolidant Paraloid R B-72 in Macuxi Indigenous Ceramic Vessels Investigated by Neutron Tomography / M.A.S.Pereira, R.Pugliesi // Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – p.118-121. - Bibliogr.:17. http://dx.doi.org/10.1016/j.nima.2018.02.034 С 353 - Физика плазмы136. Nguyen-Truong, H.T. Low-Energy Electron Inelastic Mean Free Paths for Liquid Water / H.T.Nguyen-Truong // Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – p.155101. - Bibliogr.:69. http://dx.doi.org/10.1088/1361-648X/aab40a С 393 - Физика низких температур137. Miller, J. Unconventional Superconductivity Discovered in Graphene Bilayers / J.Miller // Physics Today. – 2018. – Vol.71, No.5. – p.15-19. - Bibliogr.:6. https://doi.org/10.1063/PT.3.3913 С 393 з1 - Органические сверхпроводники и сверхпроводники с тяжелыми фермионами138. Zhang, P. Observation of Topological Superconductivity on the Surface of an Iron-Based Superconductor / P.Zhang, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.182-186. - Bibliogr.:31. http://dx.doi.org/10.1126/science.aan4596 С 393 и - Высокотемпературная сверхпроводимость. Новые ВТСП139. Braun, J. Correlation, Temperature and Disorder: Recent Developments in the One-Step Description of Angle-Resolved Photoemission / J.Braun, [et al.] // Physics Reports. – 2018. – Vol.740. – p.1-34. - Bibliogr.:202. http://dx.doi.org/10.1016/j.physrep.2018.02.007 С 44 - Аналитическая химия140. Silva, T.F. Elemental Mapping of Large Samples by External Ion Beam Analysis with Sub-Millimeter Resolution and Its Applications / T.F.Silva, [et al.] // Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – p.68-77. - Bibliogr.:38. http://dx.doi.org/10.1016/j.nimb.2018.03.006 С 63 - Астрофизика141. Beasley, M.A. A Single Population of Red Globular Clusters Around the Massive Compact Galaxy NGC 1277 / M.A.Beasley, [et al.] // Nature. – 2018. – Vol.555, No.7697. – p.483-486. - Bibliogr.:28. http://dx.doi.org/10.1038/nature25756 142. Gibney, E. Last Seconds of Stardom / E.Gibney // Nature. – 2018. – Vol.556, No.7701. – p.287-289. - Bibliogr.:4. http://dx.doi.org/10.1038/d41586-018-04601-7 143. Lee, H.K. Assessment of Neutron Star Equation of State Gravitational Waves : [Abstract] / H.K.Lee // Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – c.307. http://www1.jinr.ru/Pepan_letters/panl_2018_4/01_Lee_ann.pdf 144. Livio, M. On the Progenitors of Type Ia Supernovae / M.Livio, P.Mazzali // Physics Reports. – 2018. – Vol.736. – p.1-23. - Bibliogr.:p.19-23. http://dx.doi.org/10.1016/j.physrep.2018.02.002 145. Muller-Sanchez, F. Two Separate Outflows in the Dual Supermassive Black Hole System NGC 6240 / F.Muller-Sanchez, [et al.] // Nature. – 2018. – Vol.556, No.7701. – p.345-348. - Bibliogr.:30. http://dx.doi.org/10.1038/s41586-018-0033-2 146. Singh, K.N. Embedded Class Solutions Compatible for Physical Compact Stars in General Relativity / K.N.Singh, [et al.] // The European Physical Journal A. – 2018. – Vol.54, No.5. – p.77. - Bibliogr.:48. http://dx.doi.org/10.1140/epja/i2018-12510-x Ц 843 - Распознавание образов147. Zhu, B. Image Reconstruction by Domain-Transform Manifold Learning / B.Zhu, [et al.] // Nature. – 2018. – Vol.555, No.7697. – p.487-492. - Bibliogr.:33. http://dx.doi.org/10.1038/nature25988 28.0 - Биология148. Brandler, W.M. Paternally Inherited Cis-Regulatory Structural Variants Are Associated with Autism / W.M.Brandler, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.327-331. - Bibliogr.:30. http://dx.doi.org/10.1126/science.aan2261 149. Burnett, D.L. Germinal Center Antibody Mutation Trajectories Are Determined by Rapid Self/Foreign Discrimination / D.L.Burnett, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.223-226. - Bibliogr.:25. http://dx.doi.org/10.1126/science.aao3859 150. Kaplanis, J. Quantitative Analysis of Population-Scale Family Trees with Millions of Relatives / J.Kaplanis, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.171-175. - Bibliogr.:56. http://dx.doi.org/10.1126/science.aap9309 151. Krupic, J. Local Transformations of the Hippocampal Cognitive Map / J.Krupic, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1143-1146. - Bibliogr.:27. http://dx.doi.org/10.1126/science.aao4960 152. Kuzmin, E. Systematic Analysis of Complex Genetic Interactions / E.Kuzmin, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.283. http://dx.doi.org/10.1126/science.aao1729 153. Liu, T.-L. Observing the Cell in Its Native State: Imaging Subcellular Dynamics in Multicellular Organisms / T.-L.Liu, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.284. http://dx.doi.org/10.1126/science.aaq1392 154. Martins, M.I.F. High Male Sexual Investment as a Driver of Extinction in Fossil Ostracods / M.I.F.Martins, [et al.] // Nature. – 2018. – Vol.556, No.7701. – p.366-369. - Bibliogr.:36. http://dx.doi.org/10.1038/s41586-018-0020-7 155. Mayer, C. Developmental Diversification of Cortical Inhibitory Interneurons / C.Mayer, [et al.] // Nature. – 2018. – Vol.555, No.7697. – p.457-462. - Bibliogr.:29. http://dx.doi.org/10.1038/nature25999 156. Nabhan, A.N. Single-Cell Wnt Signaling Niches Maintain Stemness of Alveolar Type 2 Cells / A.N.Nabhan, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1118-1123. - Bibliogr.:39. http://dx.doi.org/10.1126/science.aam6603 157. Ohtaka-Maruyama, C. Synaptic Transmission from Subplate Neurons Controls Radial Migration of Neocortical Neurons / C.Ohtaka-Maruyama, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.313-317. - Bibliogr.:19. http://dx.doi.org/10.1126/science.aar2866 158. Roerink, S.F. Intra-Tumour Diversification in Colorectal Cancer at the Single-Cell Level / S.F.Roerink, [et al.] // Nature. – 2018. – Vol.556, No.7702. – p.457-462. - Bibliogr.:36. http://dx.doi.org/10.1038/s41586-018-0024-3 159. Schuller, J.M. Structure of the Nuclear Exosome Captured on a Maturing Preribosome / J.M.Schuller, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.219-222. - Bibliogr.:30. http://dx.doi.org/10.1126/science.aar5428 160. Smith, F.A. Body Size Downgrading of Mammals Over the Late Quaternary / F.A.Smith, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.310-313. - Bibliogr.:31. http://dx.doi.org/10.1126/science.aao5987 161. Stanton, B.Z. Chemically Induced Proximity in Biology and Medicine / B.Z.Stanton, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1117. http://dx.doi.org/10.1126/science.aao5902 162. Tan, C.S.H. Thermal Proximity Coaggregation for System-Wide Profiling of Protein Complex Dynamics in Cells / C.S.H.Tan, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1170-1177. - Bibliogr.:38. http://dx.doi.org/10.1126/science.aan0346 163. Tylewicz, S. Photoperiodic Control of Seasonal Growth is Mediated by ABA Acting on Cell-Cell Communication / S.Tylewicz, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.212-215. - Bibliogr.:18. http://dx.doi.org/10.1126/science.aan8576 164. Weidberg, H. MitoCPR - A Surveillance Pathway That Protects Mitochondria in Response to Protein Import Stress / H.Weidberg, A.Amon // Science. – 2018. – Vol.360, No.6385. – p.170. http://dx.doi.org/10.1126/science.aan4146 165. Wendeln, A.-C. Innate Immune Memory in the Brain Shapes Neurological Disease Hallmarks / A.-C.Wendeln, [et al.] // Nature. – 2018. – Vol.556, No.7701. – p.332-338. - Bibliogr.:39. http://dx.doi.org/10.1038/s41586-018-0023-4 166. Wilen, C.B. Tropism for Tuft Cells Determines Immune Promotion of Norovirus Pathogenesis / C.B.Wilen, [et al.] // Science. – 2018. – Vol.360, No.6385. – p.204-208. - Bibliogr.:31. http://dx.doi.org/10.1126/science.aar3799 28.08 - Экология167. Blattler, C.L. Two-Billion-Year-Old Evaporites Capture Earth’s Great Oxidation / C.L.Blattler, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.320-323. - Bibliogr.:30. http://dx.doi.org/10.1126/science.aar2687 168. Houghton, I.A. Vertically Migrating Swimmers Generate Aggregation-Scale Eddies in a Stratified Column / I.A.Houghton, [et al.] // Nature. – 2018. – Vol.556, No.7702. – p.497-500. - Bibliogr.:25. http://dx.doi.org/10.1038/s41586-018-0044-z 169. Jamtveit, B. Earthquake-Induced Transformation of the Lower Crust / B.Jamtveit, [et al.] // Nature. – 2018. – Vol.556, No.7702. – p.487-491. - Bibliogr.:33. http://dx.doi.org/10.1038/s41586-018-0045-y 170. Reich, P.B. Unexpected Reversal of C 3 Versus C 4 Grass Response to Elevated CO 2 During a 20-Year Field Experiment / P.B.Reich, [et al.] // Science. – 2018. – Vol.360, No.6386. – p.317-320. - Bibliogr.:30. http://dx.doi.org/10.1126/science.aas9313 171. Tschauner, O. Ice-VII Inclusions in Diamonds: Evidence for Aqueous Fluid in Earth’s Deep Mantle / O.Tschauner, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1136-1139. - Bibliogr.:33. http://dx.doi.org/10.1126/science.aao3030 172. Vieira, S.M. Translocation of a Gut Pathobiont Drives Autoimmunity in Mice and Humans / S.M.Vieira, [et al.] // Science. – 2018. – Vol.359, No.6380. – p.1156-1161. - Bibliogr.:31. http://dx.doi.org/10.1126/science.aar7201 СПИСОК ПРОСМОТРЕННЫХ ЖУРНАЛОВ
2. Journal of Physics A. – 2018. – Vol.51, No.16. – P.164001-169501. 3. Journal of Physics: Condensed Matter. – 2018. – Vol.30, No.15. – P.153001-155804. 4. Nature. – 2018. – Vol.555, No.7697. – P.409-554. 5. Nature. – 2018. – Vol.556, No.7701. – P.269-402. 6. Nature. – 2018. – Vol.556, No.7702. – P.403-530. 7. Nuclear Instruments & Methods in Physics Research A. – 2018. – Vol.889. – P.1-144. 8. Nuclear Instruments & Methods in Physics Research B. – 2018. – Vol.422. – P.1-94. 9. Nuclear Physics A. – 2018. – Vol.973. – P.1-164. 10. Physics Letters A. – 2018. – Vol.382, No.19. – P.1255-1316. 11. Physics Reports. – 2018. – Vol.734. – P.1-74. 12. Physics Reports. – 2018. – Vol.735. – P.1-37. 13. Physics Reports. – 2018. – Vol.736. – P.1-23. 14. Physics Reports. – 2018. – Vol.737. – P.1-84. 15. Physics Reports. – 2018. – Vol.738. – P.1-76. 16. Physics Reports. – 2018. – Vol.740. – P.1-34. 17. Physics Today. – 2018. – Vol.71, No.5. – P.1-72. 18. Science. – 2018. – Vol.359, No.6380. – P.1069-1188. 19. Science. – 2018. – Vol.360, No.6385. – P.125-236. 20. Science. – 2018. – Vol.360, No.6386. – P.237-352. 21. The European Physical Journal A. – 2018. – Vol.54, No.5. 22. Физика элементарных частиц и атомного ядра. Письма. – 2018. – Т.15, №4. – С.301-374. |